
Introduction
Pumpkin's General Use Telecommand System (GUTS) is a robust, ready to use, and extensible
collection of flight software for cubesat missions.

What does GUTS provide?

GUTS Services
A set of microservice applications that implement essential functionality to interface
with the operating system, spacecraft bus hardware, and spacecraft payload
hardware. Exposes functionality via HTTP endpoints servicing GraphQL requests.
Returns JSON responses allowing usage of many different programing languages.
Ready-to-use microservices for:

Telemetry and command handling
Radio communications and encryption
Interfacing with Pumpkin's cubesat modules
Solar array articulation
File uplink and downlink
ADCS control
GNSS time sync
Thruster control
Mission logic (CONOPS)
Error condition detection and recovery

GUTS Linux
Yocto based embedded Linux optimized for GUTS flight software
Highly extensible and configurable for specific missions
Bundles GUTS flight software into ready-to-use images
Low-effort porting to any hardware supported by a Yocto layer
Fault-tolerant boot and update mechanisms

An SDK for developing flight software in Rust, C, and optionally Python
libraries for speeding up development
code examples

https://www.rust-lang.org/

Supported Hardware

Pumpkin Hardware

C&DH / main computer
Pumpkin MBM2 + Beaglebone Black
Additional hardware support can be added thanks to Yocto's extensibility

Solar Array
Pumpkin Dual Articulated Deployable Solar Array (DASA)

Power Systems and Batteries
Pumpkin Electrical Power System Module (EPSM)
Pumpkin Battery Module (BM2)
Pumpkin Linear Electrical Power System (LEPS)

GNSS
Pumpkin GNSS Receiver Module (GPSRM)

Third Party Hardware

Radio
IQ Wireless Xlink Radio
NearSpace Launch EyeStar-S4 Iridium Radio

ADCS
AAC Hyperion IADCS400

Thruster
AASC Solid State Thruster

Other Resources

SupMCU Reference Manual
RS3/FlatSat User Manual
Novatel OEM7 Receiver User Documentation

https://www.pumpkinspace.com/store/p208/mbm2.html
https://www.pumpkinspace.com/store/p215/135W_Dual_Articulated_Deployable_Solar_Array.html
https://www.pumpkinspace.com/store/p216/High-power_Multi-channel_Electrical_Power_System_Module_%28EPSM1%29.html
https://www.pumpkinspace.com/store/p198/Intelligent_Protected_Lithium_Battery_Module_with_SoC_Reporting_%28BM2%29.html
https://www.pumpkinspace.com/store/p51/Linear_EPS_Module_%28LEPSM1%29.html
https://www.pumpkinspace.com/store/p58/GNSS_Receiver_Module_%28GPSRM_1%29_Kit.html
https://www.iq-spacecom.com/
https://nearspacelaunch.com/eye-star/
https://www.aac-clyde.space/what-we-do/space-products-components/adcs/iadcs400
https://www.aasc.space/
https://pumpkin-space-systems.gitlab.io/public/software-reference-manual/
https://pumpkin-space-systems.gitlab.io/public/rs3-user-manual/index.html
https://docs.novatel.com/OEM7/Content/Home.htm

Overview
GUTS includes many ready-to-use microservices that enable the functionality of your cubesat.
GUTS services are written in Rust and serve GraphQL APIs over IP to interact with other
software and/or users.

Graphql Playground

GUTS services present a graphql playground interface over http for development and
experimentation. This is a great way to explore a service's functionality and run tests. When
connected to your cubesat over Ethernet, simply navigate to http://{cubesat-ip}:{service-
port}/ in your web browser.

For example, the graphql playground for the MCU service can be accessed at
http://192.168.1.70:8150/:

To see all the GUTS services currently installed on your cubesat, inspect the /etc/guts.d
directory.

GUTS services include systemd units for automatically starting them at boot.

https://www.rust-lang.org/
https://graphql.org/
http://localhost:3000/services/mcu/mcu.html
http://192.168.1.70:8150/
https://systemd.io/

MCU Service
The MCU service provides a high-level interface to Pumpkin's SupMCU modules.

Background

A Pumpkin cubesat bus consists of SupMCU hardware modules (see the SupMCU Reference
Manual for more information). All modules share an I2C bus with the main flight computer that
runs Linux. This I2C Bus is used to send commands to and receive telemetry from the SupMCU
modules. The MCU service provides an abstracted interface for:

requesting telemetry from SupMCU modules
sending commands to SupMCU modules
updating SupMCU module firmware (optional)
switching OS boot targets (optional)

It is also responsible for servicing the EPSM's watchdog timer via a periodic command.

Getting Started

by default the MCU service will start on boot, binding to port 8150
navigate to http://192.168.1.70:8150 for an interactive graphql playground interface
run mcu-service --help to see command-line usage of the service

https://pumpkin-space-systems.gitlab.io/public/software-reference-manual/pages/module-overview.html
https://pumpkin-space-systems.gitlab.io/public/software-reference-manual/pages/module-overview.html
https://pumpkin-space-systems.gitlab.io/public/software-reference-manual/pages/epsm.html
http://192.168.1.70:8150/

Graphql Examples

check for signs of life
query alive {alive}

check what modules are available on the bus
query modules {
 modules{name, address, mcu, responseDelay}
}

get all module definitions
query module_definitions {
 modules {
 name,
 address,
 simulatable,
 mcu,
 responseDelay,
 telemetry {
 name,
 format {format},
 length,
 idx,
 telemetryType,
 },
 commands {name, idx}
 }
}

set the EPSM's LED to be solid
mutation led {
 sendCommands(
 module: {name: "EPSM"},
 commands:[
 "SUP:LED ON",
]
) {command, ok}
}

set the EPSM's LED back to blinky
mutation led {
 sendCommands(
 module: {name: "EPSM"},
 commands:[
 "SUP:LED FLASH",
]
) {command, ok}
}

reset the EPSM (will cut power to the bus!)
mutation epsm_reset {
 sendCommands(
 module: {name: "EPSM"},

 commands:[
 "SUP:RES NOW",
]
) {command, ok}
}

query how many seconds are left until the EPSM watchdog times out
query epsm_wdt_seconds_left {
 telemetry(
 module: {name:"EPSM"},
 names: ["wdt_seconds_left_s"]
)
}

set the EPSM watchdog period to 180 seconds
mutation set_eps_wdt_timeout {
 sendCommands(
 module: {name: "EPSM"},
 commands:[
 "EPSM:NVM UNLOCK,12345",
 "EPSM:NVM WDT, 180",
 "EPSM:NVM WRITE,1",
 "EPSM:WDT KICK"
]
) {command, ok}
}

query some EPSM telemetry
query some_eps_tlm {
 telemetry(
 module: {name:"EPSM"},
 names: [
 "elapsed_time_s",
 "mcu_load",
 "supmcu_mcu_id",
 "5v_converter_data",
 "fgpa_version_number",
 "sns_vusb_mv",
 "firmware_version"
]
)
}

query all EPSM telemetry
query epsm_telemetry {
 telemetry(module: {name: "EPSM"})
}

query some GPS telemetry
query some_gps_tlm {
 telemetry(
 module: {address: 81},
 names: [
 "scpi_cmds_processed",

 "supmcu_mcu_id",
 "status_pv",
 "combined_telemetry",
 "firmware_version",
],
)
}

query all GPS telemetry
query gpsrm_telemetry {
 telemetry(module: {name: "GPS"})
}

set the response delay for telemetry from a particular module
mutation set_epsm_response_delay {
 responseDelay(
 module: {name: "EPSM"},
 delay: 0.08,
) {ok}
}

set boot target to EMMC (BBB only!)
mutation boot_emmc {
 bootTarget(bootTarget: EMMC)
}

set boot target to uSD (BBB only!)
mutation boot_usd {
 bootTarget(bootTarget: USD)
}

get current boot target (BBB only!)
query boot_target {
 bootTarget
}

Update GPSRM firmware (optional feature!)
mutation update_gps {
 updateFirmware(
 hexfile: "/home/root/hexes/fw/512/GPSRM1_512MC206_RevD_fw-1.3.5a-2.0.0a.hex"
 module: {name: "GPS"},
) {ok}
}

