

RM-PICC18
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

© Copyright 2003 Pumpkin, Inc. last updated on Jan 6, 2004
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– HI-TECH PICC-18

 Reference Manual

2 RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

Introduction
This manual is intended for Salvo users who are targeting
Microchip (http://www.microchip.com/) PIC18 PICmicro® MCUs
with HI-TECH's (http://www.htsoft.com/) PICC-18 C compiler.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with HI-
TECH's PICC-18 C compiler:

Salvo User Manual
Application Note AN-1 (obsolete)
Application Note AN-3
Application Note AN-4 (obsolete)
Application Note AN-9
Application Note AN-17
Application Note AN-26

Note PICC-18 users are strongly advised to upgrade to
Microchip's MPLAB IDE v6.30. Use AN-26 in place of AN-1 and
AN-4.

Example Projects
Example Salvo projects for use with HI-TECH's PICC-18 C
compiler and the Microchip MPLAB v5 and v6 IDEs can be found
in the:

\salvo\ex\ex1\sysf
\salvo\tut\tu1\sysf
\salvo\tut\tu2\sysf
\salvo\tut\tu3\sysf
\salvo\tut\tu4\sysf
\salvo\tut\tu5\sysf
\salvo\tut\tu6\sysf

directories of every Salvo for Microchip PICmicro® MCUs
distribution.

http://www.microchip.com/
http://www.htsoft.com/

 Reference Manual

RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

3

Features
Table 1 illustrates important features of Salvo's port to HI-TECH's
PICC-18 C compiler.

general
available distributions Salvo Lite, LE & Pro

for Microchip PICmicro® MCUs
supported targets PIC18 PICmicro® MCUs
header file(s) portpicc.h
other target-specific file(s) --
project subdirectory name(s) SYSF

salvocfg.h
target-specific header file

required? no

compiler auto-detected? yes1
libraries

\salvo\lib directory htpicc18

context switching
method label-based via

OSCtxSw(label)
_OSLabel() required? yes
size of auto variables and

function parameters in tasks unrestricted

memory
memory models supported small and large

interrupts

controlled via
GIEL and/or GIEH bits. Controlled
via OSPIC18_INTERRUPT_MASK

configuration option
interrupt status preserved in

critical sections? no

method used interrupts disabled on entry and
enabled on exit of critical sections

nesting limit no nesting permitted
alternate methods possible? yes2

debugging
source-level debugging? only in source-code builds

compiler
bitfield packing support? yes
printf() / %p support? yes / no
va_arg() support? yes

Table 1: Features of Salvo Port to HI-TECH's PICC-18 C
Compiler

 Reference Manual

4 RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

Compiler Optimizations

Incompatible Optimizations
None of HI'TECH's PICC-18 C compiler's optimizations are
known to be incompatible with Salvo.

Libraries

Nomenclature
The Salvo libraries for HI-TECH's PICC-18 C compiler follow the
naming convention shown in Figure 1. It is similar to that used by
HI-TECH for the standard PICC-18 libraries.3

Salvo library

sfp82sab.lib

type
f: freeware
l: standard

PICC-18

memory model
l: large (<=2MB address space)
s: small (<=64KB address space)

configuration
a: multitasking with delays and events
d: multitasking with delays
e: multitasking with events
m: multitasking only
t: multitasking with delays and events,

tasks can wait with timeouts

variant
a: fns called from anywhere
b: fns called from background only
f: fns called from foreground only
-: not applicable

LFSR & pointer size
0: no LFSR, 16-bit ROM pointers
1: no LFSR, 24-bit ROM pointers
2: LFSR, 16-bit ROM pointers
3: LFSR, 24-bit ROM pointers
6: LFSR, 16-bit ROM pointers, errata changes
7: LFSR, 24-bit ROM pointers, errata changes

Figure 1: Salvo Library Nomenclature – HI-TECH's PICC-
18 C Compiler

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target
Each library is intended for one or more specific processors. Table
2 lists the correct library for each PICmicro® MCU.

 Reference Manual

RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

5

target code processor(s)

80s, 80l, 81s, 81l:
all PIC18 PICmicro® MCUs.

Recommended only for 18C242,
18C252, 18C442, 18C452

82s, 82l, 83s, 83l:

all PIC18 PICmicro® MCUs except
18C242, 18C252, 18C442, 18C452,
18F252, 18F258, 18F452, 18F458
Recommended for all other PIC18

PICmicro® MCUs.
86s, 86l, 87s, 87l:4 18F252, 18F258, 18F452, 18F458

Table 2: Processors for Salvo Libraries – HI-TECH's
PICC-18 C Compiler

Note The p80s/p80l/p81s/p81l Salvo libraries are for those
early PIC18 PICmicro® MCUs that do not support the LFSR
instruction correctly5 (e.g. 18C242, 18C252, 18C442, 18C452). All
later devices in the family support this instruction correctly.

On targets that support LFSR correctly, using libraries with LFSR
support will result in smaller and faster code.

Verifying the Target Code
You can verify that you have chosen the right Salvo library by
observing the PICC-18 C compiler's actions. Open the project's
*.map file and look towards the end of the Linker command line
entry. There, you will see which PICC-18 library was used to build
your application. Use the same target code for your Salvo library.

For example, Listing 1 shows the linker command line entry for a
PICC-18 project built for the PIC18F6220:

Linker command line:

-z -Mtu4lite.map -ol.obj \
 -ppowerup=00h,intcode=08h,intcodelo=018h,init,end_init -ACOMRAM=00h-05Fh \
 -ptemp=COMRAM -ARAM=0-0FFhx15 -ABIGRAM=0-0EFFh -pramtop=0F00h \
 -ACODE=00h-0FFFFh -pconfig=0300000h,idloc=0200000h,eeprom_data=0f00000h \
 -pconst=end_init+0F00h \
 -prbss=COMRAM,rbit=COMRAM,rdata=COMRAM,nvrram=COMRAM,nvbit=COMRAM \
 -pstruct=COMRAM -pnvram=-f00h \
 -pintsave_regs=BIGRAM,bigbss=BIGRAM,bigdata=BIGRAM -pdata=RAM,param \
 -pidata=CODE,irdata=CODE,ibigdata=CODE -Q18F6620 -h+tu4lite.sym -E \
 -EC:\WINDOWS\TEMP_3VV1BR5.AAA -ver=PICC18#V8.20PL4 \
 C:\HTSOFT\PIC18\LIB\picrt82l.obj C:\salvo\tut\tu4\main.obj \
 C:\salvo\src\mem.obj C:\salvo\lib\htpicc18\sfp82leb.lib \
 C:\HTSOFT\PIC18\LIB\pic82l-c.lib

Object code version is 3.7

Machine type is 18F6620

Listing 1: Example Linker Command Line for
PIC18F6220 (from *.map file)

In this case, the PICC-18 C compiler is linking to its
pic82l-c.lib library in order to build the application. Therefore

 Reference Manual

6 RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

the appropriate target code for the Salvo library is 82, e.g.
sfp82leb.lib.6

Memory Model
The HI-TECH PICC-18 C compiler's small and large memory
models are supported. In library builds, the memory model applied
to all of the source files must match that used in the library. For
source-code builds, the same memory model must be applied to all
of the source files.

Note Unlike the library configuration and variant options
specified in the salvocfg.h file for a library build, none is
specified for the selected memory model. Therefore particular
attention must be paid to the memory model settings used to build
an application. The memory model is usually specified on a node-
by-node basis inside an IDE (e.g. MPLAB).

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

Variant
Because PICmicro® MCUs do not have a general-purpose stack,
the Salvo source code must be properly configured via the
appropriate configuration parameters. The Salvo libraries for HI-
TECH's PICC-18 C compiler are provided in different variants as
shown in Table 3.

If your application does not call any Salvo services from within
interrupts, use the b variant. If you wish to these services
exclusively from within interrupts, use the f variant. If you wish to
do this from both inside and outside of interrupts, use the a variant.
In each case, you must call the services that you use from the
correct place in your application, or either the linker will generate
an error or your application will fail during runtime.

 Reference Manual

RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

7

variant code description

a / OSA:

Applicable services can be called
from anywhere, i.e. from the

foreground and the background,
simultaneously.

b / OSB: Applicable services may only be
called from the background (default).

f / OSF: Applicable services may only be
called from the foreground.

- / OSNONE: Library has no variants.7

Table 3: Variants for Salvo Libraries – HI-TECH's PICC-
18 C Compiler

See the OSCALL_OSXYZ configuration parameters for more
information on calling Salvo services from interrupts.

See Multiple Callgraph Issues, below, for more information on
using library variants.

Build Settings
Salvo's libraries for HI-TECH's PICC-18 C compiler are built
using the default settings outlined in the Libraries chapter of the
Salvo User Manual. Target-specific settings and overrides are
listed in Table 4.

compiled limits
max. number of tasks 3
max. number of events 5
max. number of event flags8 1
max. number of message

queues9 1

target-specific settings
delay sizes 8 bits
idling hook enabled
interrupt-enable bits during

critical sections GIEH = GIEL = 0

interrupt level10 0
message pointers can point to ROM or RAM
Salvo objects11 persistent
system tick counter available, 32 bits
task priorities enabled
watchdog timer cleared in OSSched().

Table 4: Build Settings and Overrides for Salvo Libraries
for HI-TECH's PICC-18 C Compiler

Note Because the persistent bank qualifier is used to build
these libraries, OSInit() must be used in all applications that use

 Reference Manual

8 RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

these libraries. Without it, Salvo's variables will be uninitialized,
with unpredictable results.

Note PIC18 Salvo libraries are configured for 16-bit pointers
(PICC-18's default pointer type), and therefore message pointers
can point to RAM and ROM.

Note The compiled limits for tasks, events, etc. in Salvo libraries
can be overridden to be less (all Salvo distributions) or more (all
Salvo distributions except Salvo Lite) than the library default. See
the Libraries chapter of the Salvo User Manual for more
information.

Available Libraries
There are 360 Salvo libraries for HI-TECH's PICC-18 C compiler.
Each Salvo for Microchip PICmicro® MCUs distribution contains
the Salvo libraries of the lesser distributions beneath it.

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
different Salvo for PICmicro® MCUs distributions targeting the
PIC18C452.

Note When overriding the default number of tasks, events, etc. in
a Salvo library build, OSTASKS and OSEVENTS (respectively) must
also be defined in the project's salvocfg.h. If left undefined, the
default values (see Table 4) will be used.

Salvo Lite Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OSA
#define OSLIBRARY_VARIANT OSB

Listing 2: Example salvocfg.h for Library Build Using
sfp80lab.lib

 Reference Manual

RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

9

Salvo LE & Pro Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OSA
#define OSLIBRARY_VARIANT OSB

Listing 3: Example salvocfg.h for Library Build Using
slp80lab.lib

Salvo Pro Source-Code Build
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSLOC_ALL persistent
#define OSTASKS 3

Listing 4: Example salvocfg.h for Source-Code Build

Performance

Memory Usage
tutorial memory usage12 total ROM13 total RAM14

tu1lite 378 24
tu2lite 618 29
tu3lite 696 33
tu4lite 1462 43
tu5lite 2374 96
tu6lite 2658 103
tu6pro15 1994 84

Table 5: ROM and RAM requirements for Salvo
Applications built with HI-TECH's PICC-18 C Compiler

Special Considerations

Stack Issues
For architectural reasons, HI-TECH's PICC-18 C compiler does
not pass parameters on the stack. Nor does it allocate memory for
auto (local) variables on the stack. Instead, it employs a static
overlay model. This has advantages in speed and memory
utilization, but it precludes recursion and has other impacts.

 Reference Manual

10 RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

Multiple Callgraph Issues
By default, it is expected that Salvo services will only be called
from the background / main loop / task level. This is the default
configuration for source-code builds. b-variant libraries allow
service calls only from the background level. Should you wish to
call certain services from the foreground / interrupt level, you will
need to set OSCALL_OSXYZ configuration options for source-code
builds or use a different library (see Table 3) for library builds.

From Variant, above, we find that the f-variant libraries allow you
to call event-reading and –signaling services from the foreground.
Similarly, the a-variant libraries allow you to call the applicable
services from anywhere in your code.

The interrupt_level Pragma
When using the a-variant libraries, each instance of an applicable
service in use must be called from the foreground, i.e. from an
interrupt. Also, PICC-18's interrupt_level pragma must be set
to 0 and placed immediately ahead of the application's interrupt
routine, like this:

#pragma interrupt_level 016
void interrupt IntVector(void)
{
 OSStartTask(TASK_P);
}

Listing 5: Setting the HI-TECH PICC-18 interrupt_level
Pragma for an ISR when Using a-variant Libraries

PICC-18 requires this in order to manage the parameter overlay
areas for functions located on multiple call graphs.

Note This pragma has no effect if there aren't any functions
located on multiple call graphs. Therefore it's OK to add it to any
application compiled with PICC-18.

Example: Foreground Signaling of One Event Type
In a library build, if you were to move a call to OSSignalBinSem()
from a Salvo task (i.e. from the background) to an interrupt handler
(i.e. to the foreground) without changing the library variant, you'd
find that the application crashes from a stack overflow almost
immediately. This is because the default interrupt control17 in
OSSignalBinSem() is incompatible with being placed inside an
interrupt. To circumvent this, you must change

 Reference Manual

RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

11

OSLIBRARY_VARIANT to OSF and link an f-variant library (e.g.
sfp42Caf.lib — note the f for foreground in the variant field) in
order to properly support event service calls in the foreground.

Example: Foreground and Background Signaling of One Event
Type

If we call OSSignalBinSem() from a task and from within an
interrupt handler without addressing the callgraph issues, the
compiler issues an error message:

Error[] file : function _OSSignalBinSem appears
in multiple call graphs: rooted at intlevel0 and
_main Exit status = 1

To resolve this, add the interrupt_level 0 pragma to your
interrupt handler (see Listing 5, above) and use the a-variant
library after setting OSLIBRARY_TYPE to OSA.

OSProtect() and OSUnprotect()
HI-TECH's PICC-18 C compiler requires that when a function is
contained in multiple callgraphs, interrupts must be disabled
"around" that function to prevent corruption of parameters and/or
return values.18 Therefore you must call OSProtect() immediately
before and OSUnprotect() immediately after all background
instances of every Salvo service that is called from both the
background and foreground levels, e.g.:

void TaskN (void)
{
 …
 OSProtect();
 OSSignalBinSem(SEM_P);
 OSUnprotect();
 …
}

#pragma interrupt_level 0
void interrupt IntVector(void)
{
 OSSignalBinSem(SEM_P);
}

Tip Wrapping OSProtect(), the affected Salvo service and
OSUnprotect() within another function can make your code more
legible. The wrapper may only be called from mainline code – i.e.
it can only have a single callgraph. A wrapper function might look
like this:

 Reference Manual

12 RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

 OSSignalBinSem_Wrapper(OStypeEcbP ecbP)
 {
 OSProtect();
 OSSignalBinSem(ecbP);
 OSUnprotect();
 }

and a wrapper macro might look like this:

 #define OSSignalBinSem_Wrapper(ecbP) \
 do { OSProtect(); \
 OSSignalBinSem(ecbP); \
 OSUnprotect(); \
 } while (0)

Example: Mixed Signaling of Multiple Event Types
The library variants affect all event services equally – that is, an f-
variant library expects all applicable event services to be called
from the foreground, i.e. from within interrupts. If you wish to call
some services from the background, and others from the
foreground, you'll have to use the a-variant library, as explained
above.

A complication arises when you need an a-variant library for a
particular event type, and you also are using additional event types.
In this case, each instance of an applicable event service in use
must be called from the foreground. If it's not called from the
foreground, the compiler issue this error message:

Error[] file : function _OSSignalBinSem is not
called from specified interrupt level
Exit status = 1

However, it need not be called from the background. If you have
the "opposite" situation, e.g. you are using an a-variant library for
one type of event and you need to call an event service for a
different event type only from the background, one solution is to
place the required foreground call inside an interrupt handler, with
a conditional that prevents it from ever happening, e.g.:

#pragma interrupt_level 0
void interrupt IntVector(void)
{
 /* real code is here … */
 …
 /* dummy to satisfy call graph. */
 if (0)

 Reference Manual

RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

13

 {
 OSSignalBinSem(OSECBP(1));
 }
}

This creates a call graph acceptable to HI-TECH's PICC-18 C
compiler and allows a successful compile and execution.
Interestingly, the optimizer will remove the call from the final
application.

Interrupt Control
The PIC18 architecture supports two distinct priority levels. When
enabled, two separate global-interrupt-enable bits, GIEH and GIEL,
are used to control high- and low-priority interrupts, respectively.

Interrupts are automatically disabled within Salvo's critical
sections. By default, both GIEH and GIEL are reset (i.e. made 0)
during critical sections. This is controlled by Salvo's
OSPIC18_INTERRUPT_MASK configuration option (default value:
0xC0).

Salvo Pro users can reconfigure the way in which interrupts are
disabled during critical sections by redefining
OSPIC18_INTERRUPT_MASK in the project's salvocfg.h. For
example, if Salvo services (e.g. OSTimer()) are called only from
low-priority interrupts, then a value of 0x40 for
OSPIC18_INTERRUPT_MASK ensures that only low-priority
interrupts are disabled during a Salvo critical section. In this
configuration, high-priority interrupts will therefore be unaffected
by Salvo. This is especially useful when high-rate interrupts are
present.

1 This is done automatically through the HI_TECH_C and _PIC18 symbols

defined by the compiler.
2 The lack of an addressable stack severely limits the scope of alternate

methods.
3 As of PICC-18 v8.00.
4 Specifically, the PIC18FXX2 Rev B3 and PIC18FXX8 Rev B4 parts. Consult

PICC-18 readme files for more information.
5 See Microchip's PIC18CXX2 Errata.
6 Note that the PICC-18 library is automatically added to the linker command

line. The Salvo library must be added manually by the user as part of setting
up the project.

7 A library may have no variants if the target processor does not support
interrupts.

8 Each event flag has RAM allocated to its own event flag control block.

 Reference Manual

14 RM-PICC18 Salvo Compiler Reference Manual – HI-TECH PICC-18

9 Each message queue has RAM allocated to its own message queue control

block.
10 Argument for PICC-18's #pragma interrupt_level for those services

that can be called from within an ISR.
11 By making Salvo's variables persistent, the PICC-18 compiler is able to

omit some initialization code and thus reduce ROM requirements.
12 Salvo v3.2.0 with PICC-18 v8.20PL4.
13 In bytes.
14 In bytes, all banks.
15 Salvo Pro build differs slightly from Salvo Lite build due to configuration –

see tutorial's salvocfg.h.
16 Salvo always uses level 0.
17 OSSignalBinSem(), like many other user services, disables interrupts on

entry and (blindly) re-enables them on exit. The re-enabling of interrupts, if
placed inside a PICmicro interrupt routine, causes problems.
OSSignalBinSem() in the f- and a-variant libraries control interrupts
differently.

18 See PICC-18 manual for more information.

	Salvo Compiler Reference Manual – HI˚TECH PICC-18
	Introduction
	Related Documents
	Example Projects
	Features
	Compiler Optimizations
	Incompatible Optimizations

	Libraries
	Nomenclature
	Type
	Target
	Verifying the Target Code

	Memory Model
	Configuration
	Variant
	Build Settings
	Available Libraries

	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build

	Performance
	Memory Usage

	Special Considerations
	Stack Issues
	Multiple Callgraph Issues
	The interrupt_level Pragma
	Example: Foreground Signaling of One Event Type
	Example: Foreground and Background Signaling of One Event Type
	OSProtect() and OSUnprotect()
	Example: Mixed Signaling of Multiple Event Types

	Interrupt Control

