

RM-MSCX86
Reference Manual

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on May 13, 2008 updated on May 23, 2008
All trademarks mentioned herein are properties of their respective companies.

Salvo Compiler Reference Manual
– Microsoft C++

 Reference Manual

2 RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

Introduction
This manual is intended for Salvo users who are targeting PCs with
Microsoft's (http://www.microsoft.com/) C++ compiler. Normally,
such users wish to simulate their Salvo application on a PC before
eventually running it on another target (e.g. 8051). By using Salvo
for x86, you can develop and debug the multitasking and other
aspects of your application on a PC before retargeting it for your
intended embedded platform.

Note A recent version of Microsoft's Visual C++ tool suite is
required.1 Microsoft offers free versions of their Visual C++
compiler in the form of Visual C++ 2008 Express Edition on
their website at http://www.microsoft.com/express.2

Tip By downloading and installing Visual C++ and Salvo Lite for
x86 you can immediately begin building Win32 Salvo
applications.

Compatibility
Salvo for x86 is compatible with the following Microsoft Visual
C++ compiler versions:

Release Name Visual C++ Version Number
Visual C++ .NET 2003 7.1
Visual C++ 2005 8.0
Visual C++ 2008 9.0

Note Salvo for x86 may also be compatible with earlier versions
of the Visual C++ toolset, but this has not been verified.3 Since
Visual C++ 2008 Express is available as a free download, we
expect most users to be working with the version 9.0 compiler.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with
Microsoft's C++ compiler:

• Salvo User Manual

http://www.microsoft.com/
http://www.microsoft.com/express/

 Reference Manual

RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

3

Example Projects
Example Salvo projects for use with Microsoft's C++ compiler and
the Visual Studio IDE can be found in the:

\Pumpkin\Salvo\Example\x86

directories of every Salvo for x86 distribution.

Tip These example projects can be easily modified for nearly all
x86-class PCs.

Features
Table 1 illustrates important features of Salvo's port to Microsoft's
C++ compiler.

 Reference Manual

4 RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

General
Abbreviated as MSCX86

Available distributions Salvo Lite, LE & Pro
for x86

Supported targets all 32-bit x86 architectures
Header file(s) salvoportmscx86.h
Other target-specific file(s) salvoportmscx86.c

salvocfg.h
Compiler auto-detected? yes4
Include target-specific header file

in salvocfg.h? n/a

Libraries
Located in Lib\MSCX86

Context Switching
Method function-based via

OSDispatch() & OSCtxSw()
Labels required? no
Size of auto variables and

function parameters in tasks
total size must not exceed 2^24 8-bit

bytes
Interrupts

Interrupt latency in context
switcher 0 cycles

Interrupts in critical sections
controlled via user hooks

Default behavior in critical
sections see example user hooks

Debugging
Source-level debugging with Pro

library builds? yes

Compiler
Bitfield packing support? no
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo port to Microsoft's C++
compiler

Libraries

Nomenclature
The Salvo libraries for Microsoft's C++ compiler follow the
naming convention shown in Figure 1.

 Reference Manual

RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

5

Salvo library

salvofmscx86-a.lib

type
f: freeware
l: standard

Microsoft
C/C++ compiler

configuration
a: multitasking with delays and events
d: multitasking with delays
e: multitasking with events
m: multitasking only
t: multitasking with delays and events,

tasks can wait with timeo

option
-: no option
i: library includes debugging information

target
x86: 32-bit PC architecture

Figure 1: Salvo library nomenclature – Microsoft's C++

compiler

Type
Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Target
Salvo for x86 is compatible with all 32-bit x86 architectures.

Option
Salvo Pro users can select between two sets of libraries – standard
libraries, and standard libraries incorporating source-level
debugging information. The latter have been built with Microsoft's
C++ compiler 's /Zd command-line option. This adds source-level
debugging information to the libraries, making them ideal for
source-level debugging and stepping in the Visual Studio
debugger. To use these libraries, simply select one that includes the
debugging information (e.g. salvolmscx86it.lib) instead of one
without (e.g. salvolmscx86-t.lib) in your Visual Studio project.

Configuration
Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

 Reference Manual

6 RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

Note Unlike most Salvo Lite distributions – which include only
the 't' (timeouts enabled) library configuration – Salvo Lite for x86
includes all five of the standard 'a' through 't' library
configurations.

Build Settings
Salvo's libraries for Microsoft's C++ compiler are built using the
default settings outlined in the Libraries chapter of the Salvo User
Manual. Target-specific settings and overrides are listed in Table 2.

Note Certain Salvo for x86 library settings (e.g. the 32-bit delays,
set via the advanced configuration option OSBYTES_OF_DELAYS)
differ from the defaults used to build the libraries in other Salvo
distributions. This is because there is no real cost in data and
program memory sizes for these configuration options when
running on a PC with unlimited memory. Failure to observe these
differences may lead to confusion when comparing a Salvo
application on x86 to one on a native target.

For example, a Salvo Lite for PICmicro MCUs application will be
limited to 8-bit delays.5 The same application built with Salvo Lite
for x866 can be built with 32-bit delays. Long delays in the Salvo
Lite for x86 application will work properly, whereas they will
appear as (delay modulo 256) delays in the Salvo for PICmicro
MCUs application. In this example, both Salvo Lite distributions
can handle 8-bit delays, but only Salvo Lite for x86 can handle
32-bit delays. Users who wish to use 32-bit delays in their target
applications must upgrade to Salvo Pro, which allows user access
to advanced configuration options (like delays).

Target-specific Settings
Delay sizes 32 bits

Idling hook dummy,
can be overridden

Interrupt hook dummy,
can be overridden

Watchdog hook dummy,
can be overridden

System tick counter available, 32 bits
Task priorities enabled

Table 2: Build settings and overrides for Salvo libraries
for Microsoft's C++ compiler

 Reference Manual

RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

7

Note Unlike other Salvo distributions, Salvo Lite for x86 libraries
have no precompiled limits7 for the number of supported tasks,
events, etc.

Tip Additional Salvo configuration options are enabled for Salvo
for x86 libraries (e.g. OSENABLE_STACK_CHECKING,
OSGATHER_STATISTICS, etc.). See the salvolib.h header file for
more information.

Available Libraries
Salvo Lite for x86 contains freeware libraries in all configurations.
Salvo LE for x86 adds standard libraries in all configurations.
Salvo Pro for x86 adds standard libraries in all configurations with
debugging information included. Each Salvo for x86 distribution
contains the Salvo libraries of the lesser distributions beneath it.

Target-Specific Salvo Source Files
The source file salvoportmscx86.c is needed for Salvo Pro
source-code builds.

salvocfg.h Examples
Below are examples of salvocfg.h project configuration files for
various different Salvo distributions and the PC.

Salvo Lite Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OST
#define OSTASKS 23
#define OSEVENTS 17
#define OSEVENT_FLAGS 6
#define OSMESSAGE_QUEUES 5

Listing 1: Example salvocfg.h for library build using
salvofmscx86-t.lib

 Reference Manual

8 RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

Salvo LE & Pro Library Build
#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSL
#define OSLIBRARY_CONFIG OST
#define OSTASKS 42
#define OSEVENTS 13
#define OSEVENT_FLAGS 3
#define OSMESSAGE_QUEUES 2

Listing 2: Example salvocfg.h for library build using
salvolmscx86-t.lib or salvolmscx86it.lib

Salvo Pro Source-Code Build
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_SEMAPHORES TRUE
#define OSTASKS 9
#define OSEVENTS 17
#define OSEVENT_FLAGS 2
#define OSMESSAGE_QUEUES 4

Listing 3: Example salvocfg.h for source-code build

Performance

Interrupt Latencies
Since Salvo's context switcher for Microsoft's C++ compiler does
not need to control interrupts, Salvo applications can easily be
created with zero total interrupt latency for interrupts of interest.

In a properly-configured application, only those interrupts that call
Salvo services will experience interrupt latency from Salvo's
operations. Users must ensure that these interrupt sources are
disabled (and re-enabled) via the user interrupt hooks.

Disabling and re-enabling interrupts globally in the user interrupt
hooks (i.e., the default user interrupt hook behavior) is of course
permitted, but will result in non-zero interrupt latencies for all
interrupt sources, even those that do not call Salvo services. See
the target-specific source files of this distribution for examples.

 Reference Manual

RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

9

User Hooks

Overriding Default Hooks
In library builds, users can define new hook functions in their
projects and the linker will choose the user function(s) over the
default function(s) contained in the Salvo library.

In source-code builds, users can remove the default hook file(s)
from the project and substitute their own hook functions.

Idling
The default idling hook in salvohook_idle.c is a dummy
function, as shown below.

void OSIdlingHook (void)
{
 ;
}

Listing 4: Default Salvo idling hook for Microsoft's C++
compiler

Users can replace it (e.g. with code to log the idling performance
of the system) by building their own version with their
application.

Interrupt
The default interrupt hooks in salvohook_interrupt.c are
dummy functions, as shown below.

void OSDisableHook (void)
{
 ;
}

void OSEnableHook (void)
{
 ;
}

Listing 5: Default Salvo interrupt hooks for Microsoft's
C++ compiler

Tip Since the PC's interrupt scheme is considerably more complex
and/or less transparent than that of a typical microcontroller, it is

 Reference Manual

10 RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

recommended that interrupt control not be used in a Salvo for x86
application. Interrupt should be simulated at the background /
main() level, preferably from within the loop that calls the Salvo
scheduler.

Watchdog
The default watchdog hook in salvohook_wdt.c is a dummy
function, as shown below.

void OSClrWDTHook (void)
{
 ;
}

Listing 6: Default Salvo watchdog hook for Microsoft's
C++ compiler

Users can replace it by building their own version with their
application.

Compiler Issues

Incompatible Optimizations
There are no know Microsoft C++ compiler optimizations that are
incompatible with Salvo for x86.

IDE Issues

Precompiled Headers
Many users are likely to develop in C++ when using Salvo with
Visual C++. Salvo 4 is compatible with C++ applications. To
avoid build errors, set the Precompiled Headers property8 of
each Salvo source file (e.g. salvomem.c) to Not Using
Precompiled Headers. Otherwise it will generate an error:

fatal error C1010: unexpected end of file while
looking for precompiled header directive.

Listing 7: Error when using precompiled headers with
Visual C++

 Reference Manual

RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

11

LIBCD.lib
You may encounter the linker error below if you are using Visual
C++ 2005 or later, and the libraries in the Salvo Lite for x86
distribution were built with an earlier version of the Visual C++
compiler:

LINK : fatal error LNK1104: cannot open file
'LIBCD.lib'

Listing 8: Error when LIBCD.lib cannot be found

This occurs because "(t)his file is the static library for the debug
single threaded version of the C runtime. Visual Studio 2005 no
longer supports this version of the C runtime … " 9

The simplest solution is to tell Visual Studio to ignore the LIBCD
library. To do so, in the project's Properties pages, choose
Configuration Properties → Linker → Input and enter LIBCD in
the Ignore Specific Library field. The build will then complete
without error, as shown below:10

------ Rebuild All started: Project: Lite, Configuration: Debug Win32 ------
Deleting intermediate and output files for project 'Lite', configuration
'Debug|Win32'
Compiling...
cl : Command line warning D9035 : option 'Wp64' has been deprecated and will be
removed in a future release
stdafx.cpp
Compiling...
cl : Command line warning D9035 : option 'Wp64' has been deprecated and will be
removed in a future release
salvomem.c
salvohook_idle.c
salvohook_interrupt.c
salvohook_wdt.c
tut5.c
Generating Code...
Compiling manifest to resources...
Microsoft (R) Windows (R) Resource Compiler Version 6.0.5724.0
Copyright (C) Microsoft Corporation. All rights reserved.
Linking...
Embedding manifest...
Microsoft (R) Windows (R) Resource Compiler Version 6.0.5724.0
Copyright (C) Microsoft Corporation. All rights reserved.
Build log was saved at
"file://c:\Pumpkin\Salvo\Example\x86\x86\Win32\Tut\Tut5\Microsoft Visual
Studio\tut5\Lite\Debug\BuildLog.htm"
Lite - 0 error(s), 2 warning(s)
========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

Listing 9: Successful build while ignoring LIBCD.lib

1 Salvo was ported to x86 using Visual C++ .NET 2003 (aka Visual C++ 7.1).
2 Older versions – e.g. Visual C++ 2005 Express – are also available via the

Previous Version link.
3 Compatibility with earlier versions is more likely when doing source-code

builds.
4 This is done automatically through the _MSC_VER symbol defined by the

compiler.
5 Because the precompiled Salvo Lite for PICmicro MCUs libraries are built

with 8-bit delays.

 Reference Manual

12 RM-MSCX86 Salvo Compiler Reference Manual – Microsoft C++

6 Or Salvo Pro for PICmicro MCUs, since all Salvo Pro distributions permit

changes to advanced configuration options.
7 The preprocessor will flag as an error numbers of tasks, events, etc. in excess

of 1000.
8 This is done in Visual Studio 2003 .NET by selecting the Properties of one or

more files, then General Configuration Properties, then C++, then
Precompiled Headers, and under Create/Use Precompiler Header selecting
Not Using Precompiled Headers.

9 Jonathan Caves, Microsoft Visual C++ Compiler Team,
http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=332295.

10 Salvo Lite x86 project tut5lite built with Visual C++ 2008 Express. The Salvo
Lite x86 was built using Visual Studio .NET 2003.

	Salvo Compiler Reference Manual – Microsoft C++
	Introduction
	Compatibility
	Related Documents
	Example Projects
	Features
	Libraries
	Nomenclature
	Type
	Target
	Option
	Configuration
	Build Settings
	Available Libraries

	Target-Specific Salvo Source Files
	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build

	Performance
	Interrupt Latencies

	User Hooks
	Overriding Default Hooks
	Idling
	Interrupt
	Watchdog

	Compiler Issues
	Incompatible Optimizations

	IDE Issues
	Precompiled Headers
	LIBCD.lib

