PUMPKIN | RM-EPS1C17

Reference Manual

750 Naples Street + San Francisco, CA 94112 < (415) 584-6360 < http://www.pumpkininc.com

Salvo Compiler Reference Manual
— Seiko Epson S1C17

S Salvo

The RTOS that runs in tiny places.”

© Copyright 2008 Pumpkin, Inc. last updated on Feb 29, 2008
All trademarks mentioned herein are properties of their respective companies.

S Salvo

The RTOS that runs in tiny places™

Reference Manual

Introduction

This manua is intended for Salvo 4 users who are targeting Seiko
Epson S1C17xxx 16-bit microcontrollers with Seiko Epson's
(http://www.epson.co.jp/e/) S5U1C17001C C compiler v1.1 and
later (hereafter referred to as "Seiko Epson's C Compiler Package
for SIC17 Family").

Note Seiko Epson's C Compiler Package for S1C17 Family is
normally used with the GNU17 IDE running under Eclipse. All of
this software is available directly from Seiko Epson.

Related Documents

Example Projects

Features

The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with Selko
Epson's C Compiler Package for S1C17 Family:

e Salvo User Manual

Example Salvo projects for use with Seiko Epson's C Compiler
Package for S1C17 Family and the ImageCraft IDE can be found
in the:

\ Punpki n\ Sal vo\ Exanpl e\ S1C17\

directories of every Salvo for SIC17 Family distribution.

Tip These example projects can be easily modified for any device
in the S1C17 family.

Table 1 illustrates important features of Salvo's port to Seiko
Epson's C Compiler Package for S1C17 Family.

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17

http://www.epson.co.jp/e/

S Salvo

e G- Reference Manual
General
Abbreviated as EPS1C17
Available distributions 32)';’03 '{E‘i}",'fﬁ‘n 5;0
Supported targets entire S1C17 family
Header file(s) sal voportepslcl?. h
sal voportepslcl7-small.s,

Other target-specific file(s) sal voport epslcl7-m ddl e. s,

sal voportepslcl7-regul ar.s

salvocfg.h

Compiler auto-detected? yes1

Include target-specific header file

in sal vocfg. h? yes
libraries
Located in Li b\ EPS1C17
Context Switching

function-based via
OSDi spat ch() & OSCt xSw()

Labels required? no
Size of auto variables and total size must not exceed 255 8-bit

function parameters in tasks bytes

Memory & Registers

R4-R7 (call-saved registers) saved in each tcb, 32 bits each

Interrupts

Method

Interrupt latency in context
switcher

Interrupts in critical sections
controlled via

Default behavior in critical
sections

0 cycles
user hooks

see example user hooks

Debugging
Source-level debugging with Pro

library builds? yes
Compiler
Bitfield packing support? no
printf() / %p support? yes / yes
va_arg() support? yes

Table 1: Features of Salvo port to Seiko Epson's C
Compiler Package for S1C17 Family

Libraries

Nomenclature

The Salvo libraries for Seiko Epson's C Compiler Package for
S1C17 Family follow the naming convention shown in Figure 1.

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17 3

S Salvo

The RTOS that runs in tiny places™

Reference Manual

Type

Target

Memory Model

Option

libsalvofepslcl7s-a.a

\ /
Salvo library configuration
a: multitasking with delays and events
d: multitasking with delays
type e: multitasking with events
f: freeware m: multitasking only
I: standard t: multitasking with delays and events,
Seiko Epson tasks can wait with timeo
S1C17 C Compiler — option
- no option
target — i: library includes debugging information
s1c17: all S1C17 family devices —
memory model
m: MIDDLE
rr REGULAR
s: SMALL

Figure 1: Salvo Library Nomenclature — Seiko Epson's C
Compiler Package for S1C17 Family

Salvo Lite distributions contain freeware libraries. All other Salvo
distributions contain standard libraries. See the Libraries chapter of
the Salvo User Manual for more information on library types.

Each library works on all members of the S1C17 family.

Seiko Epson's C Compiler Package for S1C17 Family supports
three distinct memory models — SMALL, MIDDLE and
REGULAR. When doing a library build, the Salvo library's
memory model must match that of the project.

Note A project's sal vocf g. h configuration file does not affect
the memory model in use. Therefore when building applications
with Salvo libraries you must ensure that the Salvo library used
corresponds to the project's memory model.

Salvo Pro users can select between two sets of libraries — standard
libraries, and standard libraries incorporating source-level
debugging information. The latter have been built with Seiko
Epson's C Compiler Package for S1C17 Family's +gst abs

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17

S Salvo

The RTOS that runs in tiny places™

Reference Manual

Configuration

Build Settings

Available Libraries

command-line option. This adds source-level debugging
information to the libraries, making them ideal for source-level
debugging and stepping in the GNU17 IDE. To use these libraries,
simply select one that includes the debugging information (e.g.
| i bsal vol i epsicl7rit.a) instead of one without (eg.
| i bsal vol i epslcl7r-t. a)inyour GNU17 project.

Different library configurations are provided for different Salvo
distributions and to enable the user to minimize the Salvo kernel's
footprint. See the Libraries chapter of the Salvo User Manual for
more information on library configurations.

Salvo's libraries for Seiko Epson's C Compiler Package for S1C17
Family are built using the default settings outlined in the Libraries
chapter of the Salvo User Manual. Target-specific settings and
overides are listed in Table 2.

Target-specific Settings
Delay sizes 8 bits
dummy,
can be overridden
disables then restores PSR's | bit,
can be overridden

Idling hook

Interrupt hook

dummy,
HIEEIEEY) re s can be overridden
System tick counter available, 32 bits
Task priorities enabled

Table 2: Build settings and overrides for Salvo libraries
for Seiko Epson's C Compiler Package for S1C17 Family

Note Salvo Lite libraries have precompiled limits for the number
of supported tasks, events, etc. Salvo LE and Pro libraries have no
such limits. See the Libraries chapter of the Salvo User Manual for
more information.

There are a total of 33 Salvo libraries for Seiko Epson's C
Compiler Package for S1C17 Family. Each Savo for S1C17
Family distribution contains the Savo libraries of the lesser
distributions beneath it.

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17

S Salvo

The RTOS that runs in tiny places™

Reference Manual

Target-Specific Salvo Source Files

Depending on the memory model chosen, one of three different
context-switcher filesis required for Salvo Pro source-code builds,
asshown in Table 3:

Context-switcher Filename Application
sal voportepslcl7-snmall.s small memory model (64KB)
sal voportepslcl7-niddle.s middle memory model (1MB)
sal voportepslcl7-regul ar.s regular memory model (16MB)

Table 3: Target-specific context-switcher files for Seiko
Epson's C Compiler Package for S1C17 Family

These context-switching files vary in the manner in which function
pointers are employed for task vectoring, as well asin the extended
instructions used.

salvocfg.h Examples

Below are examples of sal vocf g. h project configuration files for
different Salvo for S1C17 Family distributions targeting any
device in the S1C17 family.

Salvo Lite Library Build

#def i ne OSUSE_LI BRARY TRUE
#def i ne OSLI BRARY_TYPE OSF
#def i ne OSLI BRARY_CONFI G OoST
#def i ne OSTASKS 2
#def i ne OSEVENTS 4
#def i ne OSEVENT_FLAGS 0
#def i ne OSMESSAGE_QUEUES 1

Listing 1: Example salvocfg.h for library build using
libsalvofepslcl7s-t.a

Salvo LE & Pro Library Build

#defi ne OSUSE_LI BRARY TRUE
#defi ne OSLI BRARY_TYPE OsL
#defi ne OSLI BRARY_CONFI G OST
#defi ne OSTASKS 7
#defi ne OSEVENTS 13
#def i ne OSEVENT_FLAGS 3
#def i ne OSMESSAGE_QUEUES 2

Listing 2: Example salvocfg.h for library build using
libsalvolepslcl7r-t.a or libsalvolepslc17m-t.a or
libsalvolepslcl7s-t.a

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17

S Salvo

The RTOS that runs in tiny places™ Referen C e M an u al
Salvo Pro Source-Code Build
#def i ne OSENABLE_| DLI NG_HOOK TRUE
#def i ne OSENABLE_SEMAPHORES TRUE
#def i ne OSTASKS 9
#def i ne OSEVENTS 17
#def i ne OSEVENT_FLAGS 2
#def i ne OSMESSAGE_QUEUES 4

Listing 3: Example salvocfg.h for source-code build

Interrupt Latencies

Since Savo's context switcher for Seiko Epson's C Compiler
Package for S1C17 Family does not need to control interrupts,
Salvo applications can easily be created with zero total interrupt
latency for interrupts of interest.

In a properly-configured application, only those interrupts that call
Salvo services will (by necessity) experience interrupt latency from
Salvo's operations. Users must ensure that these interrupt sources
are disabled (and re-enabled) viathe user interrupt hooks.

Disabling and re-enabling interrupts globally in the user interrupt
hooks (i.e., the default user interrupt hook behavior) is of course
permitted, but will result in non-zero interrupt latencies for al
interrupt sources, even those that do not call Salvo services. See
the target-specific source files of this distribution for examples.

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17 7

:; Salvo

The RTOS that runs in tiny places™

Reference Manual

Memory Usage

User Hooks

Example Application® Program Memory Data Memory

Usage® Usage*
\S1C17\.\tut5lite 27?7 ??
\'S1C17\ .\ tut5l e 2?? ??
\ S1C17\ .\t ut 5pro
(SMALL nenory nodel) 1692 s
\ S1C17\ .\t ut 5pro 2056 166

(REGULAR nenory nodel)

Table 4: ROM and RAM requirements for Salvo
applications built with Seiko Epson's C Compiler
Package for S1C17 Family

Overriding Default Hooks

Idling

Interrupt

In library builds, users can define new hook functions in their
projects and the linker will choose the user function(s) over the
default function(s) contained in the Salvo library.

In source-code builds, users can remove the default hook file(s)
from the project and substitute their own hook functions.

The default idling hook in sal vohook_idle.c is a dummy
function, as shown below.

void OsldlingHook (void)
{

}

Listing 4: Default Salvo idling hook for Seiko Epson's C
Compiler Package for S1C17 Family

Users can replace it (e.g. with a directive to put the S1C17 to
sleep) by building their own version with their application.

The default interrupt hooks in sal vohook_interrupt.c are
shown below.”

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17

S Salvo

Dok hrived Reference Manual
voi d OSDi sabl eHook (void)
{
asm("di;");
}
voi d OSEnabl eHook (void)
{
asnm("ei;");
}

Listing 5: Default Salvo interrupt hooks for Seiko
Epson's C Compiler Package for S1C17 Family

These functions clear the I bit (i.e. disable global interrupts) in the
PSR across Salvo's critical section. The default interrupt hooks are
suitable for any application that calls only osTi mer () from an
ISR.

Note The S1C17 architecture and instruction set do not provide a
direct means of reading or writing the PSR's | (globa interrupt
enable) bit.

The astute reader will recognize that the default hooks will cause
interrupts to be re-enabled inside an ISR (i.e. before exiting from
the ISR via areti ingruction) when a Salvo APl service that
controls interrupts (e.g. GSSi gnal Bi nSen()) is called from the
foreground / ISR level.® This may or may not cause problems in
your application. Two possible solutions are presented below.

The most expedient solution is to create your own interrupt hooks
to selectively disable and re-enable only those (peripheral) sources
of interrupts whose associated ISRs call Salvo services. For
example, if incoming UART characters signal to Salvo viaacall to
0sSi gnal Bi nsen() that the input stream must be processed by a
task, then the interrupt hooks should be configured as

voi d OSDi sabl eHook (void)

UART _CTL &= ~RIEN; // suppress Rx ints
}

voi d OSEnabl eHook (void)

UART CTL |= RIEN;, // allow Rx ints
}

Listing 6: Example Salvo interrupt hooks (pseudocode)
for Seiko Epson's C Compiler Package for S1C17 Family
when receiving a character leads to a Salvo API call

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17 9

S Salvo

The RTOS that runs in tiny places™

Reference Manual

Watchdog

Note The hooks in Listing 6 assume that interrupt are enabled
globally at al times, and that only the receive character ISR callsa
Salvo API service.

This approach avoids any direct manipulation of the PSR's | hit,
thereby leaving the S1C17 to automatically disable global
interrupts upon servicing an interrupt, and restoring them thereafter
to their pre-interrupt state.

Also, this approach (disabling only those periphera interrupt
sources that call Salvo API services from the foreground / interrupt
level) is the highest-performance approach, as it minimizes
interrupt latency and guarantees that all interrupt sources that are
not associated with Salvo API service calls will have no interrupt
latency due to Salvo.

Tip You can write your application's interrupt hooks to disable
and enable as many peripheral interrupt enable bits as required by
adding additional code to OSDisabl eHook() and
OSEnabl eHook() .

An alternative (and lower-performance) approach is to augment the
default interrupt hooks so that interrupts are only re-enabled in
OSEnabl eHook() when OSEnabl eHook() is caled from the
background (i.e. non-1SR) level. Thiswould require additional user
code at the entry and exit of each ISR that calls a Salvo service.
Said user code would set aflag at the start of the ISR and clear the
flag at the end of the ISR. OSEnabl eHook() would be configured
to read this flag, and would only re-enable global interrupts when
this flag was found to be cleared. The net effect would be that
when a Salvo service was called from an ISR, it would not re-
enable interrupts at the end of its critical section(s).

Warning Not disabling all source of interrupts that call Salvo
services during critical sections will cause the Salvo application to
fail.

The default watchdog hook in sal vohook_wdt.c is a dummy
function, is shown below.

10

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17

S Salvo

The RTOS that runs in tiny places™

Reference Manual

Compiler Issues

void OSC r WOTHook (void)
{
}
Listing 7: Default Salvo watchdog hook for Seiko
Epson's C Compiler Package for S1C17 Family

Users can replace it (e.g. with a directive to put clear the S1C17's
watchdog timer) by building their own version with their
application. Clearing the watchdog timer from within
osd r WoTHook () will clear the watchdog timer every time Salvo's
scheduler 0ssched() iscalled.

Warning Salvo's clearing of the watchdog timer via
0sd r WoTHook () is only a basic means of using a watchdog timer
and is not a robust solution for production. It is, however, a
reasonable starting point for developing a robust watchdog timer
scheme.

Incompatible Optimizations

There are no known incompatibilities between Seiko Epson's C
Compiler Package for S1C17 Family’s optimizations (e.g. —01)
and Salvo. The context switcher saves and restores registers R4
through R7 where necessary.

Special Considerations

Objects at RAM Address 0

The S1C17's memory map normally includes RAM at address 0.
Locating any of Salvo's global objects at O is likely to cause
problems when Salvo references that object (due to null pointer
references).” Therefore you should adjust the allowable RAM
memory range to start at 4 instead of 0. This will guarantee that no
object is placed at RAM memory address 0.

Warning The start address for the . bss (RAM objects) section
must be a multiple of 4. Odd addresses or multiples of 2 and not 4
will cause runtime errors.

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17 11

S Salvo

The RTOS that runs in tiny places™

Reference Manual

To do so in the GNU17 IDE, select Project — Properties —
GNU17 Linker Script Settings — (Section name) . bss, and
click on Edit. Set the Virtual map address to 4 and click on OK.
Then select Project — Clean, then Project — Build All.

[type Fiker text GNU17 Linker Script Settings
nfo hese ke ings will el o
Buiders These linker script settings wil result in butSpro_gnu 7IDE.Ids
C/C++ Documentation e LM Section name Labels
C/CH+ File Types 000004 2 bss __START bss:_ END_bss
C/C++ Include Paths & Symbols ra B ... Edit
CJCH+ Indexer i Edit Section E‘ brtor
C/C++ Make Project Configure a Section data
CJC++ Project Paths s) e inclutied in Hhe Linke ;
@ GHUL Buid Options Set this Section's properties to be included in the Linker Script File
@ aMUI7 GDB Commands
@ a7 General
b GMUIZ Linker Seript Settings Section name e
@ GHULT Parameter Settings e e A
Project References
Refactoring History [Juma = unan
Load map address
File Attributes
Ohiject Files are automatically allacated to this section
Unallocated files Allocated files
boat.o ~
chxsw.0 3
salvohinsen.o ttings Apply
salvocyclic.o
salvodelay.o
@ salvosvent.o —
i salvohaok_idle.o :
Foot Salvoportepsioli—regular & 1 salvohook_interrupt_EPS
salvohook_wdt.o
M/GNULT xgee -BC: /EPSON/GNULTS —o salvoinit.o pro.dunp -Ta, tut
1 otxsw salvobinsew salvoeyelic sal salvoinitz.o 2 C17_GIE salvohoo
jalvoging salvosched salvotask selv P - T‘VE"‘EW i =
M/GNUL7/as -wel?_ext tutSpro.dump — — — —
TU17/rm £ tutSpro.map
TI17/1d -Map tucSpro.map -N -T tucs em. 0 salvocyclic
.dle.o salvohook interrupt EPS1C17_ salvoportepsicl?
o salvotask.o salvotimer.o tutS.o § (2 HUL7/ lib/24bit/ 1
1017/ lib/24bit/ libc.a

Figure 2: Setting the .bss section to begin at RAM
address 0x000004 — GNUL17 IDE for Seiko Epson's C
Compiler Package for S1C17 Family

You can verify the results by opening the project's map file and
finding the value of the . bss section (should be 0x00000004).

Project Configuration

Include Paths

At aminimum, every Salvo project requires include paths to:

* Theproject'ssal vocf g. h configuration file
e sal vo. h and other Salvo header files

In the GNU17 IDE, these are configured under the GNU17 Build
Options properties of your project.

12

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17

S Salvo

The RTOS that runs in tiny places™

Reference Manual

Debugging

Compiler Errors

To add an include path, select Project — Properties — GNU17
Build Options — Build Options — Directories, and click on
the Add icon. Add include paths to both the directory that holds
your project's unique sal vocf g. h, and also to Salvo's header file
directory (usually C: / Punpki n/ Sal vo/ I nc).®

£ Properties for tutSpro |l‘@@
[type filer text] GNU17 Build Options =
Info These build option settings will result in butSpro_gnul 7IDE. mak.
Builders S Onti e
CJC++ Dacumentation vkl options | Enwironments | i ke M
Z}C++ File Types "
(= Compiler - =R
/C++ Include Paths & Symbols General Tnclude Paths (-1} LR G
CJCH+ Indexer Optimizatian
CJC++ Make Froject e
C{C++ Project Paths Symbals
@ GHU17 Build Options Code Generation
@ amU17 GDB Commands Miscellaneous
@ GHIUL7 General (=) Assembler
@b GMUIT Linker Seript Settings General
@ GMULT Parameter Settings) Linker
Project Refersnces General
Refactoring History Libraties
Rewert Settings Apply
®

Figure 3: Setting the Include Paths — GNU17 IDE for
Seiko Epson's C Compiler Package for S1C17 Family

Tip For portability and other reasons, you may find it
advantageous to use environment settings in setting include paths.
To do so, select Project — Properties — GNU17 Build
Options — Build Options — Environments, and click on
New. For example, you could create an environment setting named
SALVO DI Rand assign it avalue of C: / Punpki n/ Sal vo. Then, add
an include path of $(SALVODR)/Inc instead of
C. / Punpki n/ Sal vo/ I nc.

Note Your project is likely to require other, non-Salvo include
paths as well. These can be set using the same procedures as
outlined above.

Generally speaking, the Salvo code and user code calling the Salvo
API will compile successfully as long you are using the Salvo API

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17 13

S Salvo

e di VO Reference Manual

correctly and your sal vocf g. h configuration file is correct for the
type of build (Salvo Pro source-code build or Salvo Lite/ LE / Pro
library build) you are doing.

Linker Errors

In the GNU17 IDE, link-time errors are reported rather cryptically,
asillustrated below:

Ed GNU17 - salvocfe. h - Eclipse for GNU17 V1.1

File Edit Refactor Mavigate Search Project Run Window [BRci)
Big -6 -0 -6G- Q- i®F Q- e (T
W@ ojce.. 5 Mavig.. = O|[& tuspro_gnui7mEmak | [tuts.c [H] sakvocfg.h 52 = B |/outine | @ Make ... 32 T O]
¢ = <>¢ = | Hifndef SALVOCFG_H_ -~). &) E
T aaaa— #define SALVOCFG K _ = - T
| 2 Includes < | 3
(= .settings L e — -
(= workspace Problems | Praperties = wij .
[salvocfg.h C-Buid [tutSpra]
[boot.s ZTD:/ Punpking Salve/ Examp le/ EFSON/ 51017/ 550C17701T1 100/ Tut/ Tut 5/ Ee Lipse_S5U1CT .
IB salvohinsem.c TO0L1C/ ProftutSpro
[salvacydlic.c ~ID:/Puwpkin/Salvo/Example/EPSCON/31C17/35UC17701T1100/ Tut/ Tut5/Eclipse_S5U1C1
[8 salvodelay.c 7001C/Pro —IC:/Pumpkin/Salvo/Inc -fno-builtin -o tut5_brd.extD tut5 brd.c
[€] salvoevent.c (C:/EPICN/GNUL?/as -mpointerls -0 tut5 brd.o tut5_hrd.extd
[8 salvahook_ide.c C:/EPSCN/GNUL7/ xgoe —BC:/EPSON/ GHU17/ —Wa,-mpointerls -c -xassembler-with-cpp
@ salvohook_interrupt_EPS1 ~Wa, ——gstabs -0 salvoportepslel?-swall.o salvoportepslel7-small.s
[8 salvahook_wdt.c C:/EPSON/ GHUL7/ xgoe —BC:/EPSON/GHIL?/ —mpointerls -mshort-offset -gstabs -5
[E) saboinit.c 01 -IC:/EPSCN/GHULT/ include
[8 salvainitz.c ~ID:/Puwopkin/ Salvo/Exanple/EFSON/S1C17/85UC17701T1100/ Tut/ Tut5/Eclipse_S5U1C1
[8 salvomem.c 7001C/ Prof tutspro
[§] salvaportepsici?-small.s ~ID:/Puwpkin/Salvo/Example/EPSON/31C17/35UC17701T1100/ Tut/ Tut5/Eclipse_S5U1C1
[8 salvegins.c 7001C/Pro -IC:/Pumpkin/Salvo/Inc -fno-builtin -o salvohook idle.extO
[€] salvosched.c salvohook idle.c
[3 salvatask.c C:/EPSCN/GNU17/as -mpointerls -o salvohook_idle.o salvohook idle.extD
[salvatimer.c C:/EPSON/GNUL?/ 1d ~Map turSpro.map -N -T tutSpro_gmul?IDE. lds -0
[tuts_brd.c tutSpro.elf bhoot.o salvobinsem.o salvoeyelic.o salvodelay.o salvoevent.o
2 tuts.e salvohook interrupt EP$1C17 GIE.o salvohook wdt.o salveinit.o salvoinitZ.o
Falvomwem, 0 salvogins. o salvosched.o salvotask.o salvotimer.o tuts.o
tut5_brd.o salvoportepslcl?-small.o salvohook idle.o
C:/EPICN/GHNULT/ lik/16kic/ libstdio.a C:/EPSCN/GHNULT/ lik/16khic/ libe.a
C:/EPSCN/GHUL7/ lib/16bit/ libgoe.a C:/EPSON/GHIIL7/ 1ib/16bit/ libe.a 2> lderr
ake: *** [tutSpro.elf] Error 1
< 3 b
i

Figure 4: Example link-time error — GNU17 IDE for Seiko
Epson's C Compiler Package for S1C17 Family

The best way to resolve these sorts of errorsisto view the project's
| derr file — this will rapidly point you in the direction of a
solution:

Undefined References to Salvo Objects

When building a Salvo application, failure to include Salvo's
sal vonem ¢ in your project will lead to a slew of undefined
references to Salvo objectsin thel derr file:

sal vobi nsem o: In function ~GSSi gnal Bi nSeni :
sal vobi nsem c: 258: undefined reference to " OSsi gQout P
sal vobi nsem c: 258: undefined reference to ~OSsi gQout P'

sal vobi nsem c: 258: undefined reference to ~OSsi gQ nP'
sal vobi nsem c: 258: undefined reference to " GSsi gQ nP

sal vodel ay. o: In function " OSDel ay':

14 RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17

S Salvo

The RTOS that runs in tiny places™

Reference Manual

sal vodel ay.
sal vodel ay.

sal vodel ay.
sal vodel ay.

sal vodel ay. o:
to ~OScTchP

sal voinit.
salvoinit.
sal voinit.
salvoinit.
sal voinit.
salvoinit.
sal voinit.
salvoinit.
sal voinit.

OO0O0O0O0O0O00OO0OO0

c111:
c 111

1 163:
1 163:

f ol
In

1 48:
1 48:
1 49:
1 49:
. B3:
1 53:
. 57:
. 57:

| ow

functi
undefi
undefi
undefi
undefi
undefi
undefi
undefi
undefi

on
ned
ned
ned
ned
ned
ned
ned
ned

"OSlnit':
reference
ref erence
reference
ref erence
reference
ref erence
reference
ref erence

tut5.0: In function "main':
undefined reference to
undefined reference to

tut5.c: 136:
tut5.c: 136:

undefi ned reference
undefined reference

undefined reference
undefi ned reference

to
to
to
to
to
to
to
to

to
to

to
to

" OScTchP
" OScTchP

“OstinmerTi cks!
" OSti nmerTi cks'

" CSel i gQP'
T CSel i gQP'
" OScTchP

" OScTchP

" OSdel ay QP
" OSdel ayQP'

" OSl ost Ti cks'
" OSl ost Ti cks'

" OSechAr ea’
" OSecbAr ea’

Listing 8: Iderr contents after failing to include
salvomem.c — GNU17 IDE for Seiko Epson's C Compiler
Package for S1C17 Family

Undefined References to Salvo Functions

sal voevent .
sal voevent .
sal voevent .
sal vosched.
sal vosched.
sal vosched.
sal vosched.
sal vosched.
sal vosched.
sal vosched.

to "~ OSDel

TOOOOOOO0OOOO0

1132
1132

I'n function
5: undefined reference to ~OSDel Del ayQ
5: undefined reference to " OSDel Del ayQ

In function “OSSched':

“OSWai t Event ' :

1 369:
1 369:
370:
1 370:
1 371:
:sal vosched. c: 371:
rioQ follow

undefi ned reference
undefined reference
undefi ned reference
undefined reference
undefi ned reference

to
to
to
to
to

" OSDel PrioQ
" OSDel Pri oQ
" OSDel Pri oQ
" OSDel Pri oQ
" OSDel Pri oQ
nore undefined references

Listing 9: Iderr contents after failing to include one of
Salvo's source files in a Salvo Pro source-code build —
GNUL17 IDE for Seiko Epson's C Compiler Package for

S1C17 Family

sal vodel ay. c: 215: nore undefined references

In this example, sal vorem ¢ was not included in the project, and
therefore the linker could not find any of the Salvo objects that are
referenced throughout the Salvo code. Adding sal vonrem ¢ to the
project resulted in a successful build.

When building a Salvo application, failure to include a required
Salvo library (Salvo Lite / LE / Pro library builds) or a Savo
source file (Salvo Pro source-code builds) in your project will lead
to undefined references to Salvo servicesinthel derr file:

In this Salvo Pro source-code-build example, the two functions
OSDel Del ayQ) and OSbel Pri oQ() could not be found. A review

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17

15

S Salvo

The RTOS that runs in tiny places™

Reference Manual

of the Salvo User Manual or a grep on the Savo source-code
directory reveals that these functions are located in sal voqgdel . c.
Adding sal voqgdel . ¢ to the project resulted in a successful build.

Thisis done automatically through the _c17 symbol defined by the compiler.
Salvo 4.1.2-rc0 with v1.1 compiler.

In bytes. Entire application, including .text section. Does not include
.vector,.rodat a or other sections.

In bytes. Entire application, including .bss section. Does not include RAM
reserved for the hardware stack.

This hook isvalid for all S1C17 targets.

OSTi ner () does not control interrupts because it should never be called from
more than one location in user code.

For example, if Salvo's tch array starts at address 0, the first tch has a handle
of 0, which leads to problems when adding that tcb to any queue ... the
queueing algorithm reads the zero handle as there being no element in the
queue at that position.

All of Salvo's non-target-specific header files reside in this directory. Target-
specific header filesreside in subdirectories, e.g. in. / EPS1C17.

16

RM-EPS1C17 Salvo Compiler Reference Manual — Seiko Epson S1C17

	Salvo Compiler Reference Manual – Seiko Epson S1C17
	Introduction
	Related Documents
	Example Projects
	Features
	Libraries
	Nomenclature
	Type
	Target
	Memory Model
	Option
	Configuration
	Build Settings
	Available Libraries

	Target-Specific Salvo Source Files
	salvocfg.h Examples
	Salvo Lite Library Build
	Salvo LE & Pro Library Build
	Salvo Pro Source-Code Build
	Interrupt Latencies
	Memory Usage

	User Hooks
	Overriding Default Hooks
	Idling
	Interrupt
	Watchdog

	Compiler Issues
	Incompatible Optimizations

	Special Considerations
	Objects at RAM Address 0

	Project Configuration
	Include Paths

	Debugging
	Compiler Errors
	Linker Errors
	Undefined References to Salvo Objects
	Undefined References to Salvo Functions

