PUMPKIN AN-6

Application Note

750 Naples Street + San Francisco, CA 94112 « (415) 584-6360 < http://www.pumpkininc.com

Designing a Low-Cost
Multifunction PIC12C509A-based
Remote Fan Controller with
Salvo

Introduction

Salvo™, The RTOS that runs in tiny places™, is small enough to
fit inside the 8-pin Microchip PIC12C509A' PICmicro® MCU
with its 41 bytes of RAM and up to 1024 instructions in ROM and
still leave plenty of room for a full-featured application.

This Application Note provides a detailed explanation of the entire
hardware and software design for a multitasking Fan Controller
application that
controls and
displays fan speed
and provides user
and remote inter-
faces, all on a
PIC12C509A
running Salvo.
The limited
resources
available required
some creative

solutions while
staying within a Figure 1: 8-pin PIC12C509A Fan Controller
conventional running Salvo RTOS

multitasking
framework. How and why they were implemented is presented in
detail, with particular attention paid to timing issues.

The Fan Controller's application software (see Listing 6 below)
was written entirely in C in under two hours. A portable, battery-
powered demonstration version of the Fan Controller is shown in
Figure 1 above.

created by Andrew E. Kalman on Mar 25, 2001 updated on Feb 20, 2002
All trademarks mentioned herein are properties of their respective companies.

SUINY Application Note

Functional Description

The Fan Controller runs from a DC power source or, optionally,
three AA batteries for demonstration purposes. It accepts user
input in the form of up- and down-button keypresses. To increase
or decrease the fan speed, press the Up or Down keys, respectively.
Nine possible fan speed settings are available, indicated on an LED
bargraph as no segments lit (fan is OFF) to all eight segments2 are
lit (fan is at full speed). A beep tone is generated with each
keypress for user feedback.

Remote communications are provided over an RS-232 link.> The
Fan Controller reports speed changes due to keypresses via the RS-
232 link. It also accepts various commands (see Command Set
below) and supports software flow control (XON/XOFF). The Fan
Controller is connected to a PC / terminal via a null-modem cable.

Several measures are taken to ensure long battery life. After thirty
seconds of inactivity the bargraph display is converted to a 1Hz
metronome with tick sound. After a total of two minutes of
inactivity the Fan Controller automatically shuts off the fan and
bargraph and goes to sleep. Either keypress will wake the fan
controller, as will activity on the RS-232 receive line. When it
wakes up, the Fan Controller restores the fan speed and bargraph
display.

Software Organization

The Fan Controller's software must perform the actions listed
below, some repetitively. The minimum number of I/O pins
required for each action is listed in ().

e Initialization and startup code (0)

e Sleep and wake-up properly (0)

e Detect and debounce keypresses (2)

e Change and maintain fan speed accordingly (1)
e Display fan speed on bargraph (up to 8)

e Beep on keypress (1)

e Transmit characters over RS-232 (1)

e Receive characters over RS-232 (1)

Listing 1: Fan Controller Actions

The ability to create separate tasks in Salvo to perform many of the
items above greatly facilitates writing the Fan Controller's
software. Normally one would create six tasks to handle the last six
actions above and also use Salvo's event services for semaphores
and intertask communications® to control program flow. However,

2 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

SUINY Application Note

the severely limited RAM of the PIC12C509A requires us to group
these items to fit into just three tasks and do without events
altogether. Despite these restrictions, it's quite easy to create a full-
featured application that uses multitasking to its advantage.

Each software component of the Fan Controller application is
described in detail below. We will take advantage of Salvo's
multitasking abilities as well as its delay services in writing this
application.

Note Listing 6 contains the source code described in the sections
below. Please see Design Challenges below for application-
specific information relating to the software and/or hardware.

Variables

Most compilers will automatically initialize variables to 0 at the
start of program execution with a small piece of code that executes
immediately after reset but before mai n() . Since we would like the
Fan Controller to remember the fan speed setting (and a few other
items) when it sleeps, it's necessary to qualify those variables as
persi st ent. Since some variables (e.g. sysSt at . xmi t OK) require
non-zero initial values anyway, we might as well initialize all of
them explicitly, and thereby do away with the variable
initialization routine that is transparently provided by the compiler
— this will save us a few instructions in ROM.

The lack of event services requires that various global flags and
semaphores be used. Semaphores like sysSt at . beep are set in one
place (TaskReadKeys()) and cleared in another (TaskBeep()).
The lack of interrupts makes semaphore management very simple.
Flags like sysStat.xmitOK are set or cleared in one place
(RcvCmds()) and are read in other places (e.g. Qut RS232()). speed
and sl eepTimer are globally visible and are used in various
places.

Task Priorities

This application is not hard-real-time, and so task priorities are
more a luxury than a necessity. Since there are some ROM savings
to be realized when running without priorities, the
OSDI SABLE_TASK_PRI ORI TI ES configuration options was used.
See Source Code Listings below for the complete set of
configuration options used in this application.

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 3

PUMPKIN

Application Note

main()

The application's mai n() is straightforward, with reset detection
and initialization happening before a main loop that calls the
scheduler and manages sleep. Of note are the means by which a
timer is employed, despite the lack of interrupts (see What? No
Interrupts! below), and the fact that Salvo is initialized and tasks
are created only once, immediately before power-on reset (POR).
Subsequent wake-on-pin-change resets bypass the initialization
and task-creation code. This was done to minimize the system's
startup time from sleep.

Locating the Software UART

TaskReadKeys()

Since the PIC12C509A has no hardware UART, RS-232
communications must be implemented in software. The lack of
interrupts means that the RS-232 receiver must poll the receive
data line on a regular basis and analyze the bitstream to decide if it
contains valid incoming data. The more often the line can be
sampled, and the slower the baud rate, the better the odds of
catching the complete transmission. Therefore | nRS232() should
be called as often as possible. By ensuring that all of the tasks are
normally delayed, the odds at any time of one or more tasks
needing to be dispatched by the Salvo scheduler OSSched() are
very low. By calling | nRS232() from within the same loop that
holds OSSched(), the time between successive calls to | nRS232()
will usually be very short, maximizing its chances of "catching" an
incoming RS-232 transmission.

The software transmitter Qut RS232() does not require any special
considerations.

Since key-reading is a periodic event, this task will use
OS_Del ay() . TaskReadKeys() performs three major functions — 1)
detecting keypresses and changing the speed setting accordingly,
i1) running the metronome when the Fan Controller naps, and iii)
implementing the fan speed changes by updating the bargraph and
transmitting a character via RS-232.

Each of the three functions runs, one after the other, every
SAMPLE_PERI 0D ticks, unless a keypress has been detected, in
which case the delay will be DEBOUNCE_PERI OD. The metronome
runs independently of the other two tasks, i.e. it is not affected by
keypresses, etc. Placing it in TaskReadKeys() enables it to run
periodically. By reading sysSt at . change outside of the keypress-

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

Application Note

TaskSpinFan()

TaskBeep()

Other Functions

A Snapshot in Time

Command Set

detecting algorithm, it's possible to force an update to the bargraph
and a beep by simply setting this semaphore elsewhere in the
program.

TaskSpi nFan() implements a command-driven 8-step software
PWM in just 17 lines of C.” Since the fan must spin continuously,
TaskSpi nFan() monitors the global variable speed and sets the
PWM output pin accordingly. Changes to the fan speed take effect
in either one tick (if the fan is OFF or fully ON), or as soon as the
current PWM period ends if the fan is currently at an intermediate
speed.

TaskBeep() checks the semaphore sysSt at . beep periodically and
if set, clears the semaphore and generates a beep tone.

The remaining functions are straightforward. Care was taken to
construct program statements (e.g. whi | e() loops) so as to yield
the smallest possible code size. | nRS232() and Qut RS232() have
bit-period delays that are optimized for the chosen baud rate.

Since all three tasks are usually delayed by some number of system
ticks, and run for short periods when they're eligible, at any
particular instant in time all three tasks are likely to be delayed.
This leaves the scheduler with nothing to do. The timer counts
down the tasks' delays and makes each one eligible when its delay
expires. Therefore most of the time spent in nai n() 's loop is spent
in some very quick trips through OSTiner(), RcvCnd() and
OSSched(), with the additional overhead imposed by our Timer(
scheme and the need to monitor for going to sleep.

The Fan Controller's commands, and its response to each one, are
shown in Listing 2 below.

2" return current fan speed setting

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

Application Note

Design Challenges

Just Six I/O Pins

Not Much Stack

'0" turn fan off

'1'-'8": set fan speed (8 is maximum speed)
'S, 's" sleep

T, 't sleep in two minutes

"W, 'w: stay awake indefinitely

XOFF: stops sending characters

XON: resumes sending characters

Listing 2: Command Set

Packing all of the Fan Controller's desired functionality into an 8-
pin, 1K ROM PICmicro can be challenging. The sections below
highlight some of the difficulties (mainly hardware issues)
encountered and explain how they were solved through hardware
and/or software.

The PIC12C509A has only five general-purpose 1/O pins and one
general-purpose input pin. In order to use all six, the internal
oscillator (I NTRC) with its fixed 4MHz frequency must be used.
Additionally, the six-GPIO-pins configuration precludes the use of
an external RESET signal, as well as the Timer0 counter mode.

Six I/O pins are not enough to satisfy the Fan Controller
requirement for an eight-segment LED bargraph display. One
solution is to add an external serial-to-parallel interface to
accommodate the bargraph. Serial-to-parallel interfaces require a
minimum of two or three output lines. Thus the Fan Controller
requires five output pins (two for bargraph, one for beeper, one for
fan and one for RS-232 Tx data) and three input pins (two for keys
and one for RS-232 Rx data). Clearly some pins will have to do
double-duty as both inputs and outputs.

Salvo requires a minimum of four levels of call...return stack. The
PIC12C509A has only a two-level call...return stack, which would
normally be a problem. Happily, the compiler used® is able to
circumvent this limitation and support Salvo by intelligent use of
jump tables. This is transparent to the user and does not require
any special application coding.

6 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

SUINY Application Note

What? No Interrupts!

While it does have a single timer resource — Timer0) (TMRO) — the
PIC12C509A has no interrupts. Since it would be nice to take
advantage of Salvo's time-based services (delays specified in
system ticks, in this case), this means that Salvo's timer needs to be
called in an unusual manner. Recall that OSTi mer () is normally
called every system tick interval — a range of 2-20ms is typical for
a 4MHz PICmicro application. Since a periodic interrupt is not
available, Timer0 must be used in such a way to call OSTi mer () at
something approaching a constant system tick rate.

One possible solution would be to have the PIC12C509A sleep,
and wake up every system tick. With all six GPIO pins dedicated
to I/O and with no external clock source, the only way to achieve
this is to use the watchdog timer (WDT) to wake us from sleep.
Unfortunately, the WDOT period can vary wildly, and perhaps more
importantly, is too long (nominally 18ms) to be of use to us — more
on why below.

An alternative is to let TimerQ free-run in timer mode, monitor it
for rollover and call OSTi nmer () when this occurs. Therefore the
rollover period becomes the system tick period. As long as this
period is relatively long compared to the time spent in any other
single part of the application, the system tick rate — i.e. the rate at
which the application calls OSTinmer() — will be relatively
constant. This is achieved with the following code snippet, called
repeatedly in the infinite for() loop at the end of the Salvo
application's mai n() :

tMpTVRO = TMRO;

if (tnpTMRO < ol dTMRO)
OSTiner () ;

ol dTMRO = t mpTMRO;

Listing 3: Calling OSTimer() Periodically without
Interrupts

With the internal 4MHz oscillator and a 1:16 prescalar assigned to
TMRO, OSTi ner () is called approximately every 256 * 16 = 4096
instruction cycles. So we have a system tick period of
approximately 4ms, or a rate of approximately 250Hz.

As long as successive calls to the snippet in Listing 3 are not more
than 4ms apart, the system timer will never lose a tick. Looking
through the code, the longest operations (once the application is
running) are sending and receiving RS-232 characters. See Impact
of Software UART below for more information.

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 7

SUINY Application Note

Effective and Inexpensive Fan Speed Control

Variable Voltage Drive

At first glance it might seem reasonable to control a 5Vdc fan's
speed by varying the voltage applied across it. Since the
PIC12C509A has no analog outputs, some sort of digital-to-analog
conversion must be employed. The simplest form of D-to-A is a
pulse-width modulated (PWM) pulsetrain followed by a low-pass
filter. High-frequency PWM signals are preferred as the passive
components values (resistors and capacitors) in the low-pass filter
are small and therefore inexpensive.

In order for this to work properly, the low-pass filter's cutoff
frequency must be sufficiently far below the PWM's frequency to
remove high-frequency ripple. Also, we must be able to vary the
PWM's duty cycle with sufficient resolution for the number of fan
speeds desired. Finally, driving the fan with closed-loop control
ensures that the voltage applied across the fan does not vary with
power supply fluctuations. Figure 2 depicts an analog fan control
circuit with a second-order low-pass filter’ first stage followed by a
closed-loop fan control output stage. The first stage's output is the
weighted the sum of a DC setpoint voltage (3/4 x 5Vdc) and the
PWM signal converted to DC (1/4 x 0-5V).

PVWM Qut

Figure 2: PWM-driven Analog Fan Speed Control Circuit

DC fans usually operate over a range of 75-100% of the design
voltage. At lower voltages, the fan may still turn, but it is unlikely
to start turning from a dead stop. And below 50% of the design
voltage it's unlikely to turn at all. Therefore the useful voltage
range is relatively small, and can only control the fan over a
limited speed range. Table 1 lists the filtered PWM output of the
first stage in Figure 2 for a 30Hz PWM signal as it varies from 0 to
100% duty cycle in 10% steps.

8 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

Application Note

Direct PWM Drive

duty cycle Viiltered

(A (\vdc)
0 3.80
10 3.89
20 4. 00
30 4.12
40 4. 20
50 4,27
60 4. 38
70 4,51
80 4,59
90 4,63
100 4.73

Table 1 : First Stage Output Voltages for Figure 2

The complexity of the driving circuitry, the extra cost of the
required passive and active components and the limited voltage
range over which the fan speed can be controlled suggest that this
is not the ideal way to build a fan controller.

Controlling fan speed via direct PWM has many advantages. First,
the design voltage is always applied in full across the fan. Second,
drive circuitry is considerably simplified. Third, as PWM
frequencies of around 30-100Hz are preferred,® high-frequency or
hardware PWM is not required. Figure 3 illustrates how to drive a
fan directly via PWM.

- 1
PWM Qut y 2

Figure 3: Direct-PWM-driven Fan Speed Control Circuit

No PWM Output Either?

Since the PIC12C509A has no hardware PWM, let's investigate
what it would take to drive a fan via direct PWM in software.
Recall that PWM frequencies of 30-100Hz are preferred. For ten
steps at S0Hz, we would need a timing resolution of 2ms in order
to be able to toggle the PWM output bit at any point (10%, 20%,
..., 90%) of the PWM's waveform, as shown in Figure 4.’

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

SUINY Application Note

10%

20%

90%

100%

— 5V

— ov
I I I I I I I I I I I I

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0ns

Figure 4: 10-step PWM Waveforms at 50Hz

By calling OSTi ner () every 4.096ms and implementing an eight-
step PWM, we can achieve similar fan speed resolution at a PWM
frequency of 30.5Hz. This means that we can drive the fan speed
from within a Salvo task that delays itself by one or more system
ticks between writes to the PWM pin. The PWM waveform for a
fan speed setting of 6 (75% of full speed) is shown in Figure 5.

——————— — 5V
75%
ov

I I I I I I I I I
0.0 4.1 8.2 12.3 16.4 20.5 24.6 28.7 32.8m8

Figure 5: 8-step PWM at 30.5Hz

It was determined that the fan did not turn reliably at the two
lowest fan speed settings (12% and 25% duty cycle). Since the
resolution is the system tick period of 4.096ms, the only solution is
to increase the minimum ON time by adding extra ON cycles at the
beginning of the PWM period. 1 extra cycle (22% duty cycle) was
found to be insufficient, but two extra cycles (30% duty cycle) was
found to work reliably. The lower PWM frequency of 24.4Hz does
not appear to be a problem. The PWM task's output for a fan speed
setting of 6 (80% of full speed) is shown in Figure 6 below.

—————— — 5V
75%
ov

I I I I I I I I I I I
0.0 4.1 8.2 12.3 16.4 20.5 24.6 28.7 32.8 36.9 41.0us

Figure 6: 8-step PWM at 24.4Hz

The duty cycles for particular fan speed settings are shown in
Table 2 below. The duty cycle can be changed in 10% steps over
its useful range.

10 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

Application Note

Driving the Beeper

duty cycle

(A

0
30%
40%
50%
60%
70%
80%
90%
100%

speed

O|N|O| O B[WN PO

Table 2 : Fan Speed Settings vs. Duty Cycle

The PWM signal's jitter depends on the accuracy of
TaskSpi nFan()'s delays. Salvo specifies that the accuracy of
delays as +/- one system tick. This was observed to be true by
sending a continuous stream of 'I' commands and observing
changes in the PWM period.

Single-tone transducers (beepers) with built-in drive circuits are
very simple to use — just take the drive signal high and then take it
low the desired time period later. With a system tick every 4ms, a
task can easily drive the beeper by driving an output pin high,
delaying the desired time, and then driving the output pin low, as
shown in Figure 7.

| 2508 |

Figure 7: Drive Signal for Beeper with Integrated Driver

Beepers with integrated drivers are noticeably more expensive'’
than those without, so it behooves us to design-in the less
expensive variant. Single-tone transducers without integrated drive
electronics should be driven with a 50% duty-cycle square wave at
the specified frequency. The unit chosen has a frequency of
2048Hz, and the driving signal is shown in Figure 8.

5V
50%
— oV

[
244us

Figure 8: Square Wave for Beeper without Integrated
Driver

As with the fan speed control, driving the beeper with PWM in
hardware is trivial. But since there is none available on the
PIC12C509A, let's investigate how we can drive the beeper in

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 11

PUMPKIN

Application Note

software. Looking at Figure 8, we would have to toggle an output
pin every 244us, or every 244 instructions, to drive the beeper at
its design frequency. Since the system timer ticks every 4.096ms,
using a task to generate this signal via Salvo's delay services is out
of the question.

As there are no interrupts available, we would have to code this
waveform into the application's main loop. The overhead
associated with detecting the passage of 244us via Timer0 and
whether or not the beeper should be beeping (based on the desired
duration of the beep after a key is pressed) would consume 20-30
instruction cycles in this 244us period. With this scheme about ten
percent of the PICI2C509A's processing power will be spent
managing a relatively unimportant beeper and would prevent us
doing any operations that lasted longer than 244us.

Perhaps more importantly, any scheme that introduces jitter into
the beeper's drive waveform around the beeper's design frequency
will result in a varying duty cycle. This produces undesirable
frequency components and a raspy and unpleasant audio output.

One interesting possibility is to drive the beeper with a single pulse
or group of pulses at the desired drive frequency and repeating at
the system tick interval of 4ms. This would completely remove
high-frequency jitter. It would allow us to place control of the
beeper in a task, and enable or disable beeping via a global flag or
semaphore. Since the pulse duration is much shorter than a system
tick, a conventional delay loop inside the task would be necessary.
The driving waveform for the beeper is shown in Figure 9.

— 5V
3%
— oV

I
‘ 244us

4. 1ms I

Figure 9: Modified Pulsetrain for Single-Tone
Transducer

Even with additional drive current to make up for the lost energy
of this scheme, the resultant beeper output was deemed
unacceptable.

Ultimately we're left with no choice but to generate exactly the
waveform the beeper requires. In order to avoid jitter we must
remain in a tight loop within TaskBeep() while generating a
group of equally-spaced 122pus pulses. As we increase the number
of pulses, we increase the jitter of the fan PWM, since pulse
generation might start just before the TimerO overflow that marks
the expiration of TaskSpi nFan()'s delay. A waveform with ten
pulses was found to give a pleasant and recognizable "key click"

12

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

SUINY Application Note

sound. The final output of the beeper task is shown in Figure 10
below.

— 5v
[1J1;(LJ1JL{IJW(1J1JL/// — ov

I
‘ 200us

4. 1nms |

Figure 10 : Beeper Waveform as Implemented

Conveniently, the Fan Controller's time to write a new value to the
beeper (see Two Outputs and Two Inputs, One Three-Pin
Interface) is approximately 100us. Therefore back-to-back writes
of 1 and O result in a waveform that's very close to ideal, but
consumes slightly less time. '

Detecting Keypresses

Properly debouncing tact switch keypresses involves sampling and
resampling the state of each switch over a time period (e.g. 20ms)
that is large relative to a single instruction cycle. Naturally we'd
like to do other things while waiting to (re-)sample each switch.

Fortunately Salvo's ability to delay a task by a number of system
ticks makes this operation very easy to implement. In pseudocode,
the sample-and-debounce algorithm is shown in Listing 4.

test for keypress periodically
if key is pressed
del ay for the debounce period
if key is still pressed
do key action

Listing 4: Key Sample and Debounce Pseudocode

To implement this into a Salvo application the system timer tick
duration must be compatible with the delay(s) employed by the
algorithm. Testing for keypresses every 20ms works well.
Stretching the debounce period to a relatively long 75ms works to
our favor as it creates a pleasant key-repeat rate as a side effect.
Our choice of 4ms for the system tick fits nicely, as both of these
periods are near-integer multiples of the system tick.

Two Outputs and Two Inputs, One Three-Pin Interface

In order to prevent any flickering on the LED bargraph while a
new value is serially clocked into it, a latching shift register ('595)
was chosen to drive the bargraph. This requires three outputs from
the PIC — serial data out, serial clock and strobe. The beeper can be

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 13

PUMPKIN

Application Note

connected to the shift register's serial output so as not to use
another PIC output pin.

' 595
Serial Data Cut = 14N @t
Br——
Serial d ock =11 bsek @3
- (@8]
St r obe > 12 sTB CE g To Bar gr aph
+5V &Fr—5
— T 104 LI
13 -CL Q_|
o -CE 5
— ouT MAN—$

Figure 11 : Parallel Expansion Circuit

Of this three-pin serial interface, the only pin that should be
dedicated to the interface at all times is the strobe pin. Therefore
the serial data out and serial clock pins on the PICCan also
function as inputs. After unwanted LOW-to-HIGH transitions on
the shift register's serial clock input, new data should be shifted
through the shift register in order to maintain the desired level
(LOW or HIGH) driving the beeper.

By choosing a latched '595 shift register over an unlatched one
(e.g. '164) we can use two PIC12C509A pins as inputs without
affecting the bargraph at any time.

Taking Advantage of the Beeper's Slow Response

With a lus instruction cycle, a byte can be clocked through the
shift register in less than 100us. Single updates to the bargraph
have little audible effect on the beeper. The beeper can also be set
LOW or HIGH without updating the bargraph. Data sent to the
beeper due to intentional (e.g. bargraph updates) or unintentional
(e.g. serial clock pin on PIC12C509A configured as input and
changing) clocking of data through the shift register can be
overwritten with a quick blast of serial data out.

Impact of Software UART

Because it is not interrupt-driven, the software UART can affect
system timing. Faster baud rates require slower bit-time delay
loops, and thereby have less adverse impact. But slower baud rates
enable the receiver to better detecting incoming characters. The
application is configured for a default baud rate of 2400bps, which

14

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

Application Note

Optional Baud Rates

Timing Issues

was chosen because of its performance in detecting incoming
commands.

The Fan Controller's default baud rate of 2400bps can be
overridden to 4800bps or 9600bps by holding the Down or Up
keys, respectively, when the unit is first powered on. The selected
baud rate will remain in effect until the power is removed.

At this point it's instructive to take a closer look at some of the
timing issues involved, especially because of their impact on the
software UART's performance. The PICI12C509A's instruction
cycle is 1us when running from its internal oscillator — this cannot
be changed. Most of the time — i.e. when no task delays have
expired and there are no eligible tasks to run — the incoming RS-
232 data is sampled (via RevCnd()) every 123us — this figure was
obtained through the MPLAB simulator. In these 123 instructions
Salvo manages time services and task scheduling (via OSTi mer ()
and OSSched(), respectively) and the application calls RcvCnd()
and handles the overhead associated with our Timer(usage and the
need to monitor for going to sleep. One might refer to this as the
"idle condition". When delays expire and / or eligible tasks need to
run, the loop timing will increase significantly as tasks are
dispatched, run, and context-switch back to the scheduler. The loop
period will return to 123us as soon as all tasks are again in the
delayed state.

This 123pus cycle time defines the upper limit of the responsiveness
of the system to incoming RS-232 characters, and its ability to
detect the start bit of an incoming RS-232 bitstream. 123ps is well
below the bit periods for 1200bps (833us) and 2400bps (416us)
communications. Since it's less than half their bit periods,
RcvCnd() should be able to detect incoming RS-232 data without
any difficulties when the system is idling. For 9600bps (104pus bit
period) odds are that RevCnd() will have difficulty picking up the
start bit. The software transmitter is of course unaffected by these
issues.

While 2400bps and slower baud rates may be advantageous for
RS-232 reception, they have the opposite effect on the quality of
the PWM signal. Since bit period delays must be generated inside
of nRS232() and Qut RS232() without the use of interrupts, these
delays may affect overall system timing by lasting longer than the

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 15

PUMPKIN

Application Note

Circuit Description

Timer0 overflow period. When this happens, system ticks are lost,
and task delays no longer meet Salvo's +/- 1 system tick timer
accuracy. Decreasing the system tick period (by changing Timer0's
prescalar) only makes this worse, but lengthening the period (say,
to 8.192ms) would halve the PWM frequency.

Note that a tight delay loop also occurs within TaskBeep() . It has
been configured to be substantially less than a system tick, and
hence will not affect system timing.

An instruction cycle of much less than 1us used in conjunction
with the existing baud rates and PWM frequency would be an ideal
solution to the problems above. Since we're stuck with it, we must
make choose timing-related parameters wisely.

The schematic diagram for the PIC12C509A Demo Board is
shown in Figure 12. The circuitry is described below.

Battery B1 with three AA cells (nominally +4.5V) supply battery
power to the Demo Board. Diode D1 prevents excessive quiescent
current draw by regulator U4 when running under battery power.
Plugging a DC power source into J1 disconnects B1 and feeds the
demo board with regulated DC at one diode drop below +5V, or
roughly +4.5V. The Demo Board's can function with the positive
supply as high as +5.5V or as low as +3.5V, ensuring long life
from a set of three alkaline batteries.

Ul PIC12C509A runs from its internal 4MHz oscillator, thus
making all six pins GP[5. . 0] available for input and/or output. Ul
uses its internal reset circuitry (I NTERNAL M_CR).

GP[2..0], when configured as outputs, function as serial data,
serial clock and strobe to 74HC595 shift register U2. U2's latched
outputs feed the upper eight segments of ten-segment LED
bargraph D2. U2's serial output (BEEP) is used to directly drive
inexpensive single-tone magnetic transducer (beeper) SP1. Diode
D3 reduces ground bounce on SP1.

GP4, always configured as an output, drives 5V fan M1 via PNP
transistor Q1, necessary because Ml's current requirements
(130mA) far exceed the output drive of the PICmicro. GP4 is
forced LOW (0V) to turn on M1. Since Q1 functions as a saturated
transistor switch, nearly the entire +5V supply is available to drive

16

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

Application Note

Performance

the fan. Diode D4 protects Q1 from inductive load M1. To turn the
fan completely off, GP4 must be taken HIGH (+5V).

GP5, always configured as an output, drives level transceiver U3
with RS-232 transmit data.

GP0, when configured as an input, has weak pull-ups enabled and
can wake Ul from sleep when a change occurs. The application
can read incoming RS-232 data on this pin. Resistor R2 is provided
to isolate U3.1 from GPO when GPO is configured as an output.

GP1, when as an input, has weak pull-ups enabled and can wake U1
from sleep when a change occurs. The application can poll the Up
key SWI1 on this pin. Resistor N2A is provided to isolate SW1
from GP1 when GP1 is configured as an output and SW1 is pressed.

GP3, always configured as an input, has weak pull-ups enabled and
can wake Ul from sleep when a change occurs. The application
can poll the Down key SW2 on this pin.

RS-232 driver U3 gets logic-side power from +5V, and "steals" —
12V power from the RS-232 receive data line, which is normally
idle at —12V. Capacitor C3 serves as a reservoir for U3's V-
supply. R4 and C4 form a noise filter to shunt noise on the RS-232
cable's shield to local ground.

5Vdc fan M1 is mounted on standoffs above regulator U4 and
other components.

Decoupling capacitors C5-C7, test points TP1-TP11 and mounting
holes ZH1-ZH4 are provided. Additional pads Z19-Z20 are
provided in case one wants to hook up the remaining LEDs to an
on-board signal (e.g. Tx and Rx).

The Fan Controller software, with various extra bells and whistles
like the metronome and the ability to accept upper- and lower-case
commands, fits in the PIC12C509A with little room to spare — see
Build Results below. The Fan Controller itself fits on a 2.400" x
2.400" printed circuit board (PCB) with mixed through-hole and
surface-mount components — see Assembly Drawing (Component
Side) below. It draws a maximum of 160mA'* (fan at full speed,
all bargraph segments lit, RS-232 active), and a minimum of less
than 1pA when sleeping.

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 17

PUMPKIN

Application Note

Enhancements

Conclusion

Commands are received, echoed and processed without errors."
Fan speed can be varied over the entire range in less than a second
via the Up and Down keys. Beeper volume is adequate,
approximating the "click" sound of a tactile keyboard.

Despite being initialized only at Power-On Reset, Salvo manages
its three tasks through sleep and wake-on-pin-change without
difficulty.

The size of the application can be reduced somewhat by in-lining
Salvo's scheduler and timer — this may also reduce RAM usage.
Additionally, Salvo can be configured to use priority arrays instead
of priority queues at a substantial savings in ROM size. With
priority arrays, the tasks will be prioritized as per the arguments to
OSCr eat eTask() (see mai n() in Listing 6).

The Fan Controller is a bulletproof, relatively sophisticated
application with several time-critical operations. PWM drive, RS-
232 transmission and reception, keypress scanning and beeping all
occur essentially independent of one another. This is demonstrated
by noting that the disabling of any one of these activities has no
affect on the others.

Additional embedded programming issue like eliminating
unnecessary startup overhead, maximizing RAM utility, using a
system timer, software-driven serial communications and PWM,
minimizing power consumption and performing multiple functions
with single I/O pins are all easily accomplished within Salvo
without having to resort to source code changes, assembly
language coding or processor-specific extensions.

The clearly-defined behavior of multiple tasks running under the
Salvo RTOS makes writing the Fan Controller and similar
applications easy. Salvo's scalability enables it to be used in a
microcontroller with only 41 bytes of RAM and 1024 program
instructions.

18 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

Application Note

Source Code Listings

salvocfg.h

main.c

Listing 5 below displays the contents of the salvocfg.h
configuration file used to build this project.
OSDI SABLE_TASK PRIORITIES is set to TRUE to reduce ROM
requirements, and OSLOC_ALL has the added persistent type
qualifier in order to avoid re-initializing the Salvo variables after
each reset. The other configuration options are set to typical
values.

#def i ne OSBYTES_OF_DELAYS 1

#def i ne OSCOWPI LER OSHT_PI CC

#def i ne OSDI SABLE_TASK_PRI ORI Tl ES TRUE

#def i ne OSEVENTS 0

#defi ne OSLOC_ALL bankl persi stent
#def i ne OSTARGET OSPI C12

#def i ne OSTASKS 3

Listing 5 : salvocfg.h Configuration File

Listing 6 below displays the entire Fan Controller application's C
source code. Comments have been added to aid in understanding.

[hE Kk Rk ok kkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkhkkkkkk kK kx

Copyright (C 1995-2001 Punpkin, Inc. and its
Li censor(s). Freely distributable.

$Source: C:\\RCS\\D\\sal vo\\demo\\d3\\main.c,v $
$Author: aek $

$Revision: 1.3 $

$Dat e: 2001-07-28 16:53:16-07 $

Ml titasking Sal vo-based application using del ay
services but no event services due to the |linmited anount of
ROM and RAM in the host M crochip Pl C12C509A PI Cnicro.

For use on Punpkin's Salvo PICl2 Denp Board, assenbly P/ N
710- 00197.

See "AN-6 Multitasking Pl Cl2C509A- based Renote Fan
Controller" for nore information.

v1l. laek updated to reflect v2.2 library schene
vl.2 aek mnor edits
vl.3 aek v2.3 used less ROM now all builds

have optional baud rates.

KKK KK KA KKK IR A KA KKK KA KKK KKK KA KKK IR KKK KKK KKK KKK KA KK IR AR Ak [

#i nclude "sal vo. h"

/* detect which target we're conpiling for. */

#if defined (_12C509) || defined (_12C509A) || defined (_12CR509A)
#def i ne USI NG_12C50X TRUE

#def i ne BATTERY_OPERATI ON TRUE

__CONFI G(I NTRC | UNPROTECT) ;

#el se

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 19

PUMPKIN

REAL-TIME SOFTWARE

Application Note

#undef USI NG_12C50X

#def i ne BATTERY_OPERATI ON FALSE

#endi f

/* port pin defs for different targets.

/* is PICL6C77 or equivalent.

#i f def USI NG_12C50X

#defi ne PORT GPl O
#defi ne out DATA GPO
#define i nRX GPO
#defi ne out CLK GP1
#defi ne keyUP GP1
#defi ne out STB GP2
#def i ne keyDN GP3
#def i ne out PWM GP4
#define out TX GP5
#def i ne OPTI ON_CONFI G 0x03
#el se

#def i ne PORT PORTB
#define TRIS TRI SB
#def i ne out DATA RBO
#define i nRX RBO
#def i ne out CLK RB1
#def i ne keyUP RB1
#def i ne out STB RB2
#def i ne keyDN RB3
#defi ne out PWM RB4
#defi ne out TX RB5
#defi ne OPTI ON_CONFI G 0x03
#endi f

/* 110 port configurations for different nodes.

#def i ne GPI O_NORVAL_CONFI G
#def i ne GPl O_SERI AL_CONFI G

/* 1/0 port default val ues.
#def i ne GPO_NO_SERI AL_DATA
#define GP1_NO_SERI AL_CLK
#defi ne GP2_NO_SERI AL_STB
#defi ne GP3_NO_KEY_DOWN
#defi ne GP4_NO_PWM

#define GP5_RS232_| DLE

/* Salvo task pointers.
#def i ne TASK_READ_KEYS_P
#def i ne TASK_SPI N_FAN_P
#def i ne TASK_BEEP_P

/* del ays based on systemti
/* approxinate.

#defi ne FOUR_Ms

#defi ne TVENTY_MS
#define FIFTY_MS

#def i ne SEVENTY_FI VE_MS
#def i ne HUNDRED_MS

#def i ne HUNDRED_FI FTY_MS
#define ONE_S

#defi ne TVENTY_S

#define TH RTY_S

#define ONEEM N

#define TWO_ M N

#defi ne ONE_TI CK

#define TI ME_TO NAP
#define TI ME_TO_SLEEP
#defi ne SAMPLE_PERI CD
#def i ne DEBOUNCE_PERI CD
#define M NIl MUM_PERI OD
#defi ne NAP_TOCK_PERI CD

/* PWM output is active-low
#defi ne PWM_ON
#defi ne PWM_OFF

/* PWM steps and extra periods to ensure that fan spins at

0x0B /* normal operation
0x08 /* serial wites

0x00
0x00
0x00
0x08
0x10
0x20

OSTCBP(1)
OSTCBP(2)
OSTCBP(3)

ck of 4.096ms. Tinmes are

4883
7324

14648

29297

FOUR M5

TH RTY_S

TWO M N

TVENTY_MS

SEVENTY_FI VE_MB

FOUR M5

ONE_S / SAMPLE_PERI CD

0
1

Al ternate target

*/
*/

*/
*/
*/

*/

*/

*/
*/

*/

*/

/* all settings. Extra periods are determi ned enpirically.*/

#def i ne PWM_STEPS
#def i ne PWM_EXTRA_PERI ODS

8
2

20

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

I Application Note

#defi ne PWM_PERI OD PWM _STEPS + PWM_EXTRA_PERI ODS
/* duration of pulse train to beeper. */
#def i ne BEEP_PULSES 10 /* pul ses */

/* values for the serial data streamto be shifted through */
/* U2 in order to disable or enable the beeper. Since each*/
/* bit affects the beeper, it's inperative to use full-0"s*/

/* and full-1'"s as the patterns, as other patterns wll */
/* result in non-50% duty-cycle waveforns. */
#def i ne BEEPER _OFF 0x00
#def i ne BEEPER_ON OxFF
/* for QutShiftRegister()'s second argunent -- either just */
/* shift the data through U2, or shift and then latch it. */
#define SH FT_ONLY FALSE
#define SH FT_AND_LATCH TRUE
/* bit times in 1lus instructions for RS-232 baud rates. */

/* Note that |ow baud rates will have an adverse effect on*/
/* the PWM period when there's RS-232 activity, and high */
/* baud rates |lead to poor conmmand receiption due to the */
/* narrow sanpling w ndow. 2400 baud is default because */
/* it responds best to commands. 4800 is OK, 9600 barely */

/* works. */
#i f ndef BAUD

#def i ne BAUD 2400

#el i f BAUD < 1310 /* limt wchar delays */

#error RS-232 baud rate too |ow.
#el i f BAUD > 19200
#error RS-232 baud rate too high.

#endi f

#define DLY 3 /* cycles per delay |oop */
#def i ne OHEAD 8 /* overhead in Tx and Rx */
#def i ne XTAL 4000000

#define ONE_BIT ((XTAL/ 4/ BAUD) - (CHEAD)) / DLY
#define ONE_BI T_1200 ((XTAL/ 4/ 1200) - (CHEAD)) / DLY

#defi ne ONE_BI T_2400 ((XTAL/ 4/ 2400) - (CHEAD)) / DLY
#define ONE_BI T_4800 ((XTAL/ 4/ 4800) - (CHEAD)) / DLY
#define ONE_BI T_9600 ((XTAL/ 4/ 9600) - (CHEAD)) / DLY

#def i ne BAUD_DEFAULT ONE_BIT

#defi ne BAUD_KEY_UP ONE_BI T_9600

#defi ne BAUD_KEY_DN ONE_BI T_4800

/* software handshaking / flow control characters. Used to */

/* indicate when we're ready to receive a command. */
#defi ne XON 17 /* Carl-Q */
#def i ne XOFF 19 /* Crl-S */
/* return codes for |nRS232 */
#defi ne NO_RX_CHAR 1 /* none detected */
#defi ne BAD_RX_CHAR 2 /* bad stop bit */
/* bit patterns for bargraph LEDs when nappi ng. */
#defi ne TI CK_PATTERN Ox7F

#def i ne TOCK_PATTERN OxBF

/* speed of fan at POR start -- show sone life. */
#defi ne FAN_START_SPEED 6

/* function-calling overhead on PICl2 is greater (by 2 */
/* instructions) than in-lining delay functionality, so */
/* use this macro instead. Downside is that a char */
/* variable declaration for delay nust acconmpany it ... */
/* with full optimzations, each loop iteration takes three*/
/* cycles. */
#define ShortDel ay(a, b) { b=a; while (--b) ; }

/* sleep instruction. Don't sleep when debugging via ICE. */
#define Sleep() asn("SLEEP");
#i f BATTERY_OPERATI ON

#defi ne O rWakeFl ag() { GPWF = 0; }
#defi ne GoToSl eep() { Sleep(); }
#def i ne WokeFronSl eep() GPWUF

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 21

I Application Note

#el se

#define C rWakeFl ag()

#defi ne GoToSl eep() { SleepHere: goto SleepHere; }
#def i ne WokeFronSl eep() 0

#endi f

/* function prototypes. */
char InRS232 (void);

void QutBargraph (char pattern);

void Qut RS232 (char byte);

voi d CQut ShiftRegi ster (char byte, char useStrobe);

void RevCOnd (void);

voi d TaskBeep (void);

voi d TaskReadKeys (void);

voi d TaskSpinFan (void);

/* context-sw tching |abels. */
_OSLabel (TaskBeep1l)

_OSLabel (TaskReadKeys1)

_OSLabel (TaskReadKeys2)

_OSLabel (TaskSpi nFanl)

/* gl obal system status and sysStat byte. */

typedef struct {
char beep 11 | * keypress beep required (sem*/
char change 1 1 /* speed changed (fl ag) */
char dontSleep :1; /* suppress sl eeping */
char onPWM 11, /* PWM out active, not dc */
char xmtOK 11, /* OKto transnmt to renote */
char napBit 11 /* for nap display on bargraph */

} typeSysStat;
persistent typeSysStat sysStat;

/* fan speed, 0-8. Too expensive (ROMwi se) to have this */
/* nibble in sysStat. */
persi stent char speed;

/* systemticks counter. By declaring it persistent (OK */
/* since we always reset it on startup) we're able to rid */
/* ourselves of all the startup variable initialization */
/* code. */
persi stent unsigned int sleepTiner;

~

/* baud-rate-specific delay counter. Used by ShortDelay(). *
persi stent char oneBitDel ay;

/* U2's output to drive bargraph display. D2 on REV A and */

/* REV B has odd pinout, hence the bit juggling. */
const char LEDs[PWM STEPS+1] = { OxFF, /* 0/ OFF */
OXxEF, /* 1 */
0xCF, /* 2 */
0x8F, /* 3 */
O0xOF, /* 4 */
0x07, /* 5 */
0x03, /* 6 */
0x01, /* 7 */
0x00 }; /* 8 */

[HA KKK KRk K KKK KA KKK F KKK KK KKK KA KKK IR AR KKK IR AKX KKK KA KK IR KK

* ok ok k * Kk kK
* % * *
mai n()

Typical Salvo nain(), with extra code to acconodate
di fferences between resets, OSTiner() and receipt of RS-232
in main |oop due to lack of interrupts, and entering sleep.

* % * *
* k k * * ok kk
**I
void main (void)

unsi gned char ol dTMRO, t npTMRO;

/* Power-on reset (POR) and wake-up-fromsleep (W) */

22 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

REAL-TIME SOFTWARE

Application Note

/*
/*

bring us here after startup code. No other resets
in use.

/* setting TRIS and OPTION is al ways required.
/* port outputs in nornal configuration.
/* TimerO in tiner node at fosc/4 w 1: 16 prescal ar,

/*
/*

free-running. Rolls over every 256 * 16 = 4096
instruction cycles.

TRIS = GPI O_NORVAL_CONFI G

OPTI

ON = OPTI ON_CONFI G

/* wake-on-pi n-change can be due to either a keypress
or RS-232 Rx activity. The Device Reset Tinmer (DRT)*/

/*
/*
/*
/*
/*
/*
/*
/*

period is around 300us for non-POR resets and
varies over operating conditions. This, coupled
with the nunber of instructions it takes to get
fromreset to RevCnd() actually sanpling incomng
RS-232 Rx data, makes processing the command that
woke us up fromsleep sinply infeasible. Hence
there's nothing to do on wake-on-pi n-change.

/* we get here through POR. All these things need be

/*
it

initialized only once.
I WokeFronSl eep()) {

/* initialize port pin default values and nodes.

I* GPO: i nput Rx data

I* GP1: i nput key up

I* GP2: out put serial strobe
I* GP3: i nput key down

I* GP4: out put PWM

I* GP5: out put Tx data

PORT (GPO_NO_SERI AL_DATA)

(GP1_NO_SERI AL_CLK)
GP2_NO_SERI AL_STB)

/* these variables are initialized only on power-
/* up and persist until the system|oses power.

/* . dont Sl eep: default is to sleep
/* speed: start speed
sysStat.dont Sl eep = 0;
speed = FAN_START_SPEED;

/* set non-default baud rate if selected.
if ('keyUrP)
oneBi tDel ay =
else if (!'keyDN)
oneBi t Del ay = BAUD_KEY_DN;
el se
oneBit Del ay = BAUD_DEFAULT;

BAUD_KEY_UP;

/* initialize Salvo.

/* required because Salvo's vars are declared as
/* persistent.

oslnit();

/* create tasks. For those builds that use task
/* priorities (not really necessary here),

/* TaskBeep() must be |owest since it normally
/* only yields.

OSCr eat eTask(TaskReadKeys, TASK READ_KEYS_P, 1);
OSCr eat eTask(TaskSpi nFan, TASK_SPIN_FAN_P, 2);

OSCr eat eTask(TaskBeep, TASK_BEEP_P, 3);
}
/* these variables are (re-)initialized on power-up
/* and wake- up.
I* . beep: no beeping required
I* . change: force PWM & bargraph init
I* . onPWM PWM out put is OFF
/* . xm t oK OK to transmt to renpte
I* sl eepTi nmer: reset this counter
sysStat . beep = 0;
sysStat.change = 1;

*/
*/

*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

23

I Application Note

sysStat.onPWM = 0;

sysStat.napBit = 0;

sysStat.xmtOK = 1;

sl eepTi mer = TI ME_TO_SLEEP;

/* reset TinmerO prior to entering nain |oop. This */
/* clears the prescalar, too. */
TVMRO = 0;

/* the usual "infinite for() loop", with extra code to */
/* handle tiner and sensing for sleep. */
for (;3) {

/* if TimerO has rolled over mark it so we can call*/
/* OSTimer. A tenporary placeholder for Tinmer0O is */
/* required because it m ght change val ue between */
/* the first and second reads. This is the normal */
/* way the system keeps track of tine. */
tnpTMRO = TMRO;

if (tnpTMRO < ol dTMRO) {

-~

/* call Salvo's Tinmer to process del ayed tasks.*

OSTi ner () ;
/* time-to-sleep countdown tinmer runs at */
I* systemtick rate. */
if (sleepTiner)

sl eepTi mer--;

}
ol dTMRO = t mpTVRO;

/* act on comand, if present. Note that this has */
/* no deleterious effect on the command that woke */
/* us up from sl eep. */
RevCnd() ;

/* if sleep timer times out, then there's been no */

/* no user activity for a while, and it's safe */
/* to shut things down. \Wake up on pin change or */
/* incom ng RS-232 data. */
/* GPIO pins are in the GPI O NORMAL_CONFI G node, */
/* so no housekeeping is necessary. */

if (!sleepTiner & !sysStat.dontSleep) {

/* turn off fan, bargraph and beeper. No need */
/* to do anything else, since it will all */
/* be reset on POR/ wake-on-pin anyway. */
out PWM = PWM OFF;

Qut Bar gr aph(LEDs[0]) ;

/* reset woke-up flag. */
C rWakeFl ag() ;

/* dummy read for proper wake-on-change */
/* operation. */
ol dTMRO = PORT;

/* sleepy tine - will wake up on pin change. */
CoToSl eep();
}
/* dispatch nost eligible task. */
GOSSched() ;
}
}
/**
* ok ok k * Kk ok K
* % * *
TaskReadKeys()

Interprets user activity on the two pushbutton keys, and
does key-repeat w thout accel eration. External action from
RS- 232 port is processed here by nonitoring sysStat.change
periodically.

* % * %

* ok kk * ok k K

24 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

REAL-TIME SOFTWARE

Application Note

KKK KKK A KKK IR KKK KKK KA KA KKK KA KKK IR KKK KA KKK KKK KA KK IR KRk K [

voi d TaskReadKeys (void)

{

static persistent i; /* persistent to avoid init code

char tickTockPattern;

/* intialize this once, when task first runs.

for

NAP_

G3)

TOCK_PERI OD;

{

/* sanpl e keys every 20ns.
OS_Del ay(SAMPLE_PERI OD, TaskReadKeys1);

/* keypress neans user wants to wake system and/or

/*
if

It
/*
/*
ifo(

&& (sleepTimer <= (TIME_TO SLEEP - TI ME_TO NAP)

change fan speed.
lkeyUP || !'keyDN) {

/* wait the debounce period.
OS_Del ay(DEBOUNCE_PERI OD, TaskReadKeys?2);

/* if keyUP is still
/* by not waiting for the key to be rel eased,
/* we get key-repeat for free!
if ('keyUP) {

/* do keyUP stuff. force beep, etc. even
/* if speed doesn't change.
sysStat.change = 1;
if (speed != PWM STEPS)

speed++;

}

/* repeat for keyDN.
else if ('keyDN) {

sysStat.change = 1;
if (speed !'=0)
speed- -;

ime for some fun -- couldn't |eave any free

ROM | eftover, after all do a two-bit
nmetronone at 1lHz when the unit is napping.
I'sysStat. dont Sl eep

/* countdown timer of SAMPLE_PERI OD.
if (--i ==0) {

/* reset tiner. Note the error in the
/* nap tock period -- it's conpounded
/* by this nultiplier.

i = NAP_TOCK_PERI OD;

/* tick or tock on bargraph.
sysStat.napBit "= 1;
if (sysStat.napBit)
tickTockPattern = TI CK_PATTERN;
el se
tickTockPattern = TOCK_PATTERN;
Qut Bar gr aph(ti ckTockPattern);

/* make necessary changes if the user requested

/*
/*
ifo(

a change in speed or if an external conmand
was received.

sysStat.change) {

/* reset changed flag.

sysStat.change = 0;

/* reset sleep tiner.

sl eepTi mer = TI ME_TO_SLEEP;

/* request a beep.

sysStat. beep = 1;

/* show new speed on LED bargraph. Force

pressed, then it's valid.

*

-~

*/

*/

*/
*/

*/

*/
*/
*/

*/
*/

*/

*/
*/
*/

)) A
*/

*/
*/
*/

*/

*/
*/
*/

*/

*/

*/

*/

/* -MON/ BEEP | ow to enable Rx data nonitoring.*/

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

25

I Application Note

Qut Bar gr aph(LEDs[speed]) ;

/* now send the speed out via RS-232. */
Qut RS232(speed | '0");
}
}

}
/**
* %k %k % * ok k%
* % * %

TaskSpi nFan()

Drives the fan at the current fan setting via a PWM

* % * %
* ok kK *k Kk

KKK KKK A KKK IR A KA KKK KK A KKK KKK KA KKK F R KKK KKK A KKK KA AKX K IR AR A K [

voi d TaskSpi nFan (void)

OSt ypeDel ay del ay;

for (53) {
/* speed of O neans fan is conpletely OFF. No PWM -*/
/* dc only. Revisit in one systemtick. */
if (speed == 0) {
del ay = ONE_TI CK;
out PWV = PWM_OFF;
}

/* speed of PWM STEPS neans fan is conpletely ON. */
/* No PWM- dc only. Revisit in one systemtick. */
else if (speed == PWM STEPS) {

del ay = ONE_TI CK;
out PVWM = PVWM_ON;
}
/* internmedi ate speeds (1 <= speed <= 7) */
/* require PWM action. */
el se {
/* If PW output is OFF, we need to create the */
/* "ON pul se" whose length is directly propor-*/
/* tional to the fan speed. */
if (!sysStat.onPWM) {
del ay = PWM_EXTRA_PERI CDS + speed;
out P\WM = PWM_ON;
sysStat. onPWM = 1,
}
/* 1f PWMoutput is ON, we need to finish the */
/* PWMperiod with the output OFF. */
el se {
del ay = PWM_STEPS - speed;
out PW/ = PWM_OFF;
sysStat. onPWM = 0;
}
}
/* PWM port val ue has been set -- now delay either */
/* 4ms (dc output) or PWM high- or lowcycle. */
OS_Del ay(del ay, TaskSpi nFanl);
}
}
/**
* ok ok k * Kk ok ok
* % * *
TaskBeep()

Beep by outputting a 4kHz waveformto the beeper for a short
tine:

e etec.
Pul se width is ca. 125us. Checks for the need to beep
every systemtick, except when it's in the mddle of
beeping. Yields to nore inportant tasks.

NOTE: since no interrupts are used, semaphore managenent is
very sinple ...

26 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

REAL-TIME SOFTWARE

Application Note

* % * %
* ok kk *kk K

Kokkkkkkkkkkkkk Kk kkkkkkkhhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk* [

voi d TaskBeep (void)

{
char j;
for (;3) {
/* no services are available for us to wait the */
/* sem so we have to poll it ... */
OS_Del ay(1, TaskBeepl);
/* is semaphore set? */
if (sysStat.beep) {
/* yes, clear it. */
sysStat. beep = 0;
/* we're gonna enter a tight |oop (below), so */
/* we won't be able to receive any inconmng */
/* RS-232 data ... */
Qut RS232(XOFF) ;
/* create BEEP_DURATI ON pul ses, each of */
/* mni num wi dt h. */
j = BEEP_PULSES;
do {
Qut Shi ft Regi st er (BEEPER ON, SHI FT_ONLY) ;
Qut Shi f t Regi st er (BEEPER_OFF, SHIFT_ONLY) ;
} while (--j);
/* now that we're done beeping, we can afford */
/* to listen for incom ng RS-232 again. */
Qut RS232(XON) ;
}
}
}

[H A KKK A Ak K KKK KA KKK F KK KKK KA KA KKK IR AR KKK IR KKK KA KR AKX K IR K K
* ok kK * kKK

* % * %

Qut Shi ft Regi ster (byte, useStrobe)
Transfer data to U2 serially and latch it if requested.

Bar gr aph updates require |atching, beeper updates do not.

* % * %
* ok kk * ok k K

**I
voi d CQut ShiftRegister (char byte, char useStrobe)
{

char i;
/* force data, clock and strobe to be outputs with */
/* all-zero values. Enable these outputs. */
out DATA = 0;
out CLK = 0;
outSTB = 0;
TR S = GPI O_SERI AL_CONFI G,
/* clock the 8 bits of the serial byte out GPO. */
i =8;
do {
/* take shift clock LOW */
out CLK = 0;
/* send serial data, msb first. */
if (byte & 0x80)
out DATA = 1;
el se
out DATA = 0;
/* shift data locally. */
byte <<= 1;
/* take shift clock H GH and transfer data */
/* into shift register. */
out CLK = 1;

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

27

I Application Note

} while (--i);
/* transfer the newl y-shifted byte to the */
/* latch if requested. */
if (useStrobe) {
out STB = 1;
out STB = 0;
}
/* lastly, restore PORTB directions to their */
/* nornal sense. */
TRI'S = GPI O_NORMAL_CONFI G
}
/**
* ok kK * Kk ok k
* % * *

Qut Bar gr aph(pattern)

Since the need to update the bargraph and keep the beeper
off arises in several places, it nakes sense to turn this
sequence into a function.

* % * %
* ok kK *k Kk

KKK KK KA KKK IR I KA KKK KA KKK KA KKK F R KKK KKK KKK KKK KA KKK IR AR A K [

void QutBargraph (char pattern)

Qut Shi ft Regi ster(pattern, SH FT_AND_LATCH);
Qut Shi f t Regi st er (BEEPER_OFF, SHI FT_ONLY) ;

[RE Kk Rk ok kkkkkkkkkkkkkkkk Kk kkkkkkkkkkkkkkkkhkkkkhkkkkkkkkk kK k*x
*k ok k *kk K

* % * %

I NRS232()
Read a character fromthe RS-232 port at 2400 baud.

Returns RX_NO CHAR if no activity was detected, and
RX_BAD CHAR i f the incoming char was clearly bad.

Adapted from H - TECH exanpl e code.

* % * %
* ok kK * ok Kk

KKK KKK KKK KKK KKK KKK A KKK KKK KA KKK IR A KKK KKK KKK KA KA KK IR KR A K [

char InRS232 (void)

{
char c, i, j;
/* first, see if the line is not idle. If so, then */
/* maybe it's a start bit. If it isn't, thenit */
/* can't possibly be a start bit. */
if (inRX)

return NO_RX_CHAR;

/* okay, we nay have got a start bit. Let's delay half */
/* a bit tine so that if we did in fact pick up the */
/* very beginning of the start bit, we won't end up on*/
/* edges of the data later on due to tining */
/* variations. */
Shor t Del ay((oneBitDel ay/2), j);

/* Now sanple 8 bits of data. No need to initialize c, */

/* since all 8 bits are shifted out anyway. */
c =0;
i =8;
do {

Short Del ay(oneBi t Del ay, j);
c=(c>>1) | (inRX << 7);

} while (--i);

/* now that we've got the data bits, we nust check the */
/* stop bit -- it had better be high. In fact, by */
/* testing the next 9 bit for stop bit, we can avoid */
/* sone anbiguities that occur when the next data */
/* follows closely. */
/* E.g. '5''5'... is 0 1010 1100 1 O 1010 1100 1 ... */
/* which looks like 'S (0x53) if we pick up a false */
/* start bit in the fifth bit of the transm ssion. */

28 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

REAL-TIME SOFTWARE

Application Note

i =9;
Shor t Del ay(oneBi tDel ay, j);
do {
if ('inRX)
return BAD RX_CHAR;
} while (--i);
/* return wreceived char. */
return c;
}
/~k~k~k~k~k**********~k~k************~k~k*****************************
* %k %k * * ok k%
* % * *
Qut RS232()

Send a character out the RS-232 port.

Adapted from H - TECH exanpl e code.

* % * %
* %k k *ok Kk

KKK KKK KKK KA KA KKK KA KKK KKK KA KKK IR A KKK KKK A KA KKK AKX K IR KR A K [

voi d Qut RS232 (char byte)
char i, j;
/* can send chars unless renpte systemhas told us not */

/* to. */
if (sysStat.xmtOK) {

/* send start bit. outTX was previously high/idle. */
out TX = 0;

/* send data, LSB first, one it at a bit tine. */
i = 8;

do {

Short Del ay(oneBi tDel ay, j);

if (byte & 0x01)

outTX = 1;
el se
out TX = 0;
byte >>= 1;
} while (--i);

/* send stop bit. Line returns to idle condition. */
Short Del ay(oneBi tDel ay, j);

outTX = 1
/**
* %k k% * Kk k%
* % * *
RevCm()

CGet incom ng RS-232 data. Echo nost of them

Note that we will be in here for between zero to three
character times depending on what is detected and how we
act on it.

Conmand i st: RAN report speed
"0 turn fan off
'1'-18": set fan speed to 1-8
'S, st go to sleep i mediately
Tt sl eep when tinmer expires
WL twW o stay awake (don't sleep)
* % * %
* k Kk k * ok kk

**I
void RevCOnd (void)

char c;

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

29

PUMPKIN

REAL-TIME SOFTWARE

Application Note

/*
c =

get incom ng RS-232 character, if any.

I NRS232() ;

*/

/* if it's a speed command, update the speed and force */

/*

a speed change -- char will be echoed via update.

if ((c>='0) & (c<="'8)) {

/* other commands don't

speed = ¢ & OxOF;
sysStat.change = 1;
c = 0;

/* certain ones.
el se {
switch (¢) {
/* report fan speed.
case '?':
c = speed | '0';
br eak;
/* sl eep now.
case 'S':
case 's':
sysStat.dontSleep = 0;
sl eepTi mer = 0;
break;
/* sleep TI ME_TO SLEEP from now.
case 'T':
case 't':
sysStat.dontSleep = 0;
sl eepTi mer = TI ME_TO_SLEEP;
break;
/* stay awake forever.
case 'W:
case 'W:
sysStat.dontSleep = 1;
br eak;
/* received XOFF -- stop transmtting.
case XOFF:
sysStat. xm t OK = 0;
c = 0;
br eak;
/* received XON -- OK to transnmit.
case XON:
sysStat. xm t OK = 1;
c = 0;
break;
/* not present, bad or unknown command.
defaul t:
c = 0;
break;
}
}

/* echo if required.

if

(c)

Qut RS232(c);

Listing 6: main.c Source File

requi re speed updates -- echo

*/

*/
*/

*/

*/

*/

*/

*/

*/

*/

*/

30 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

SUINY Application Note

Build Results

RTOS Size

Examination of the map file'* shows that the ROM required by
Salvo alone is 394 words. This represents the code for
initialization, delay, scheduling, timer and assorted utility services.

Application Size

Listing 7 below displays the linker output for project
sal vo\ demo\ d3\sysj\d3.pjt when the Fan Controller
application is built using the necessary Salvo source files as nodes
in a project. All of Salvo's variables (task control blocks, etc.) are
in RAM Bank 1. The application's auto and static variables, and
the RAM required by the compiler for function argument passing
and other purposes, are in Bank 0.

Li nki ng:
Command line: "C \HT-PIC BIMPICC EXE -G -I NTEL - Mi3. map - 12C509A -
oD3. HEX -fakel ocal -1\salvo\include -1\sal vo\source

\ sal vo\ denp\ d3\ MAI N. OBJ \ sal vo\ sour ce\ DELAY. OBJ \ sal vo\ sour ce\ MEM OBJ
\ sal vo\ source\ Q NS. OBJ \sal vo\ source\ UTI L. OBJ \sal vo\source\l N T. OBJ
\ sal vo\ source\ | Nl TTASK. OBJ \ sal vo\ sour ce\ SCHED. OBJ

\'sal vo\ source\ TI MER. OBJ "

Enter PICC -HELP for help

Menory Usage Map:

Program ROM $0000 - $0002 $0003 (3) words
Program ROM $0009 - $0261 $0259 (601) words
Program ROM $028F - $03FE $0170 (368) words
Program ROM $OFFF - $0FFF $0001 (1) words
$03CD (973) words total Program ROM
Bank 0 RAM $0007 - $0008 $0002 (2) bytes
Bank 0 RAM $000B - $001F $0015 (21) bytes
(

$0017 23) bytes total Bank 0 RAM
Bank 1 RAM $0030 - $003F $0010 (16) bytes total Bank 1 RAM
Bui | d conpl eted successfully.

Listing 7: Build Results using Salvo Source Files

Listing 8 below displays the linker output for project
sal vo\deno\ d3\ sysj\d3lib.pjt when the Fan Controller
application is built using a Salvo standard library for the
PIC12C509A. Library spl 221d-.|i b supports multitasking and
delays. The ROM and RAM requirements are identical to those of
Listing 7.

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 31

SUINY Application Note

Li nki ng:
Conmand line: "C\HT-PICQBINPICC EXE -G - I NTEL -Mi3lib. map - 12C509A -
oD3LI B. HEX -fakel ocal -I\salvo\include -1\salvo\source

\ sal vo\ dermp\ d3\ MAI N. OBJ D:\ SALVO LI BRARY\ SLP211D-. LIB "
Enter PICC -HELP for help

Menory Usage Map:

Program ROM $0000 - $0002 $0003 (3) words
Program ROM $0009 - $0261 $0259 (601) words
Program ROM $028F - $03FE $0170 (368) words
Program ROM $0FFF - $0FFF $0001 (1) words
$03CD (973) words total Program ROM

Bank 0 RAM $0007 - $0008 $0002 (2) bytes
Bank 0 RAM $000B - $001F $0015 (21) bytes

$0017 (23) bytes total Bank 0 RAM
Bank 1 RAM $0030 - $003F $0010 (16) bytes total Bank 1 RAM

Bui | d conpl eted successfully.

Listing 8: Build Results using Salvo Standard Library

Listing 9 displays the linker output for
sal vo\ deno\ d3\ sysj\d3free. pjt when the Fan Controller
application is built using a Salvo freeware library. The extra
bounds-checking code contained in the freeware libraries accounts
for slightly larger ROM usage.

Li nki ng:
Conmand line: "C\HT-PICQ BINPICC EXE -G - NTEL - Mi3free. map - 12C509A -
oD3FREE. HEX -fakel ocal -I\salvo\include -I\salvo\source

\ sal vo\ deno\ d3\ MAI N. OBJ \sal vo\li brary\ SFP211D-.LIB "
Enter PICC -HELP for help

Menory Usage Map:

Program ROM $0000 - $0002 $0003 (3) words
Program ROM $0004 - $0261 $025E (606) words
Program ROM $028D - $03FE $0172 (370) words
Program ROM $OFFF - $OFFF $0001 (1) words
$03D4 (980) words total Program ROM

Bank 0 RAM $0007 - $0008 $0002 (2) bytes
Bank 0 RAM $000B - $001F $0015 (21) bytes

$0017 (23) bytes total Bank 0 RAM
Bank 1 RAM $0030 - $003F $0010 (16) bytes total Bank 1 RAM

Bui | d conpl eted successful ly.

Listing 9: Build Results using Salvo Freeware Library

Listing 10 below displays the linker output for
sal vo\ demo\ d3\ sysa\d3. pjt when the Fan Controller
application is built for the midrange PIC16C77 instead of the
baseline PIC12C509A." The smaller ROM usage is due to the
PIC16C77 having an 8-level call...return stack, which obviates the
need for many of the jump tables found in the other builds.

32 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

PUMPKIN

REAL-TIME SOFTWARE

Application Note

Li nki ng:
Conmand line: "C\HT-PICQBINPICC EXE -G - | NTEL - MI3. map -16C77 -oD3. HEX
-fakel ocal -I\salvo\include -I\salvo\source \sal vo\deno\d3\ VAl N. OBJ

\ sal vo\ sour ce\ DELAY. OBJ \sal vo\source\l NI T. OBJ \sal vo\ sour ce\ MEM OBJ

\ sal vo\ sour ce\ Q NS. OBJ \ sal vo\ sour ce\ SCHED. OBJ \ sal vo\ sour ce\ TI MER. OBJ
\ sal vo\ source\ UTI L. OBJ \sal vo\ source\l NI TTASK. OBJ "

Enter PICC -HELP for help

Menory Usage Map:
Program ROM $0000 - $0038 $0039 (57) words
Program ROM $04E4 - $07FF $031C (796) words

$0355 (853) words total Program ROM
Bank 0 RAM $0020 - $0033 $0014 (20) bytes
Bank 0 RAM $0070 - $0071 $0002 (2) bytes

$0016 (22) bytes total Bank 0 RAM
Bank 1 RAM $00A0 - $00B2 $0013 (19) bytes total Bank 1 RAM

Bui | d conpl eted successful ly.

Listing 10 : PIC16C77 Build Results

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 33

10T 15905[T002 "8 1110 R | =
HOS 896100 a
LES] Jegunn_juaunsoalez is

pieog auaa zID Id OA [es

Application Note

Figure 12 below displays the schematic diagram for the version of

the Fan Controller.

TAq Umeip poAiesad SIUb ™

SUT U dund 1002 ©)

(deo |s ou) oxeme Aeis :

uwz ui deo g
doa 5 :

speads uey - N | = dL
ERRNY ueyj Jjo uing H . TdL
N —— poscle 0 iy L
09€9 -85 (STV)
erive vo %058 o8 1) 210 e a
199115 sa |deN 052
. ©3tar [ne
u 1w irdung zeesy
s s,
S Y wod 1saL
1011U05 Mo 1 o S)
‘X1 anoqe x4 'A1ia11oe 40X NOX . T T - o o ¢
ZeZ -S4 Moys 01 ‘A [aA110adsal ‘6dL pue (> >) 0D _\ ; 7
OTdL 03} Pa3}o3uuod 3q Amu 0zz pue 61Z ‘€T T'8'N ‘0096 % XL <-) S T
wnou 1d ppo s .za 21N 2T Lyvn n.nmu 7:ao\ﬁ :aonﬁ Daoxﬁ 7
8Jewm) jos N
g90d ©01 19 uaise) 01 pasn vgz-12Z 'TIT 6dL 0 Iﬁ 0 A\ O Iﬁ
‘AG '+ Aleuwou s1 A|ddns AG+ OT d6 | 1 |
o o sdeo Bu 1 [dnossq AS+
> IQ d/ 01 paddau a.e 8g-1g pue /-€ S —
suld 4 WO "d /XX -£239TO Id uo [0 "g Ja1d0d
01 paddau [0°75 1 ‘A uo iuaudo [9a3p
0uouUDId @A lleusalje o) papinoid 8TZ-9Z 6 (Tx) Awmv_ Eo_mw:v“ mmw Oobx re _mwaw Huwwm w w
o RIS 257 54 1B o, w3 el 82
wyog T 90 ‘AS 0TXGZXSZ S1 TN ued ‘g -
‘uaysen L2z
ZH8¥0z 1e p 29ds TdS L ZHZT "LZ e QXW peay ued pai1lo|s .00S X0V -v ”\Sm 195 9z2Z
WAd do1s -6 e Sx) peay ued pa1lo|s ,0SZ XOv -y MeIIS G2z
‘p1e s Bou ‘s jau wwg 'z A jddns samod W Ai211e8 74
Oa SN id 1MVISO Id Ul M 2 1q11educo ‘9 ueH sosenz 1 . ; had »Mxm vz
4 WWd < - I=S)
‘ssadAex uo desg ‘g f @ e ‘193008 z
WWd ®IA uey A1l 2 T pieog Dtg Na_n_ oA |es ‘god z
yde 16 1eq uo MOUS pue "Bu1119s dL
paads ue) 9lepdn ‘sssidAes p1len 1 AG+ 8dL Sited snoaue | |99s W
sAox oounogap pue 308Ud ‘SWOZ AJOAT T .
:Syse) oA es g paads uey S
oses 109p m T
DY BIA ZHAY ® Buuuny TN v & UNa A3 >) ed 41 -0T 1100T /H\ Ao \Hr q N9Z -9
“douse pue jeliy Aq puno) desg UMOA wyoova ona (©) o = el az0z -cd
1saq -- Jadeaq pas) ued ales Aue e di lﬁ o) T
e1eq -1nd N0 |B 1185 S ,zn Spea) pue 2d1 B ' —)
yoje| speo|aid eiep |elios Afxo?w 1seq ‘g S5 K mvmmzH o m‘._Uova&x._._
= EZ=3) -
9331 Wo 4y dn-axem o))
wa1sAs sasneo eiep X4 gezsy 10 ssaudAax z .
= dL AS v
‘Jeu W91 7 93AUSI / Dd 01 3oeq Poa0ysd poads uey odl Wxe
e iod 427852 1eds2 shdullieg P35433 Wl oo Qud pzzox)
wapau - | U B 1A Od 01 TH 199uu0y au 1| Can & =) D avd 22z o = %8 s
5A 19991 zez S Wo 1) damod LS [e81s. N T dN woove o © avd T2z ox
avd 81Z 0X
s9 107 ™S dir g BuIp joH o
avd /120X
Sdl Qvd 912 0 NS+
= = avd S1z
el CIMO &3S <-) 0D avd pTZ ox
pneq 0096 _1e
©lep X1 ZETSH « SO punos >3 112 dl
| o | @onpoid sas nd .
nd 1IN0 AWd « 1 =5] —
| dn- 1 ind soom | ladeaag @ -_ ava stzod
‘aBUBYD -UO -3XEem
. avd 9z S /TOSO N O
'/u ‘ssaidAex 109 19P . =) avd 1z 3 £ v 12050
| eqoiss reyies. o | e & £ £ 2B AR AN
2
dn-|nd yeawm . avd 0Tz £ 5 1D
| *aBuByDd -UO -3xem | oy oo ozz €41 = avd 112 3 7 0D
%2019 |e1ies ‘ssaidAex 19818p 1D - 0Tl gy > 9 6 t_owo‘ oHL\ avd z1zo d /v0 -V60SDZTO Id
| dn-|nd yeaw | xau/g 01 310 /0 &N 3 %d‘ooﬁ NG+
*aBuULYD -Uo -axEem speads’ swous &N B R NG+
| ‘pneq 0096 _1e | & B B ais
;o elEp |elies ©Iep X ZETS « oo yde 16 teg W @® ct o
7 Twdwo v wanr o uw | V- R PSIT TD A SsA =
ind o sv ndu | sy ug g 8 © NI i
— - - T ¥T 0D
inejep . g 0€8Y -dSaH S6SOHVL
| 2SN pue uo 11eNB 1JUcD O/ 1 | S AS+ za 2n I T 1

adn OOA AS+

REAL-TIME SOFTWARE

Schematic Diagram

PUMPKIN

Figure 12: PIC12 Demo Board Schematic Diagram

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

34

PUMPKIN Application Note

Bill of Materials
Listing 11 below is the Bill of Materials for the Fan Controller.

Sal vo PI C12 Denp Board Revised: April 8, 2001
00196B. SCH Revi sion: B
Punpkin, Inc.

750 Naples Street
CA 94112

San Franci sco,
(415) 584-6360

www. punpki ni nc. com

Bill O Mterials April 8, 2001 19: 42: 22 Page 1
Item Quantity Reference Par t
1 1 Bl BH3AA- PC
2 5 C1, ¢4, C5, Cs, C7 0.1U
3 2 C2,C3 100U- 10- LP
4 4 D1, D3, D4, D5 1N4148
5 1 D2 HDSP- 4830
6 1 H1 DB- 9P
7 1 J1 PJ-202B
8 1 ML FAN- 25X10
9 1 N1 330X9
10 1 N2 1KX3I
11 1 Q 2N3906
12 1 R1 47
13 1 R2 4. 7K
14 1 R3 10
15 1 R4 M
16 1 SP1 BRT1209P- 01
17 2 SW, swe EVQ PACO4M
18 11 TP1, TP2, TP3, TP4, TP5, TP6, TP
TP7, TP8, TP9, TP10, TP11
19 1 ul PI C12C509A- 04/ P
20 1 u2 74HC595N
21 1 u3 DS276S
22 1 w4 LM2940CT-5.0
23 4 ZH1, ZH2, ZH3, ZH4 PAD4
24 1 71 PCB, Salvo PICl12 Denp Board
25 1 Z2 Socket, 8-pin, DP
26 3 Z3, 74,75 Battery, AA
27 19 z6, 77, 78, 79, 710, Z11, 712, PAD
Z13, 714, 715, Z16, 717, Z18,
Z19, 720, 721, 722, 723, Z24
28 1 725 Screw, 4-40x.250" slotted pan
head (x5)
29 1 726 Screw, 4-40x.500" slotted pan
head (x4)
30 1 z27 Washer, 4-40 split-lock (x4)
31 1 728 Washer, 4-40 flat (x1)
32 1 Z29 Nut, 4-40 (x1)
33 1 Z30 Stdoff, 4-40 Hex 0.187"x. 250"
(x4)
34 1 Z31 Washer, Special TO 220

insulating (x1)

Listing 11: Fan Controller Bill of Materials

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 35

— Application Note

PCB Plots

Shown below are the assembly and artwork plots for the Fan
Controller printed circuit board (PCB).

Assembly Drawing (Component Side)

e

@5.
(&}

00000000090,

a

RZNEH

~

[

W=z

Artwork (Layer 1/ Top)

5

!

PR l@
o 0o O [NN N N)

Figure 14: Artwork (Layer 1/ Top)

36 AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo

SUINY Application Note

Artwork (Layer 2 / Bottom)

Salvo PIC12 o

Demo Board ®

Figure 15: Artwork (Layer 2 / Bottom)

Costs substantially less than one dollar in high volumes.

The lowest two segments display RS-232 activity.

2400,N,8,1 with software flow control (XON/XOFF).

E.g. via messages.

41 instructions, including the call to OS_Del ay() .

HI-TECH PICC v7.86PL3 or later.

Unity-gain Sallen-Key topology, d=1.414 for maximally flat amplitude.
Hanrahan, David, "Fan Speed Control Techniques in PCs," Analog Dialogue,
Volume 34, Number 04, June-July, 2000.

Waveforms shown are for a fan circuit that turns the fan on with a logic high
(+5V) signal.

A difference in price of 2x to 5x is typical.

Note that alternate values for BEEPER_OFF and BEEPER_ON can be used to drive
the beeper at a higher frequency.

+4.5V supply.

Remember, it's a software, non-interrupt-driven UART, so while you may have
to send a character to it a few times before it's accepted, the Fan Controller will
not misidentify it. Command reception can be verified by the fact that the Fan
Controller echoes each character it successfully receives.

sal vo\ deno\ d3\ sysj \ d3free. map.

The salvocfg.h for this project differs only by #define OSTARGET
OSPI C16.

® N L R W N -

AN-6 Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo 37

	Designing a Low-Cost Multifunction PIC12C509A-based Remote Fan Controller with Salvo
	Introduction
	Functional Description
	Software Organization
	Variables
	Task Priorities
	main()
	Locating the Software UART

	TaskReadKeys()
	TaskSpinFan()
	TaskBeep()
	Other Functions
	A Snapshot in Time

	Command Set
	Design Challenges
	Just Six I/O Pins
	Not Much Stack
	What? No Interrupts!
	Effective and Inexpensive Fan Speed Control
	Variable Voltage Drive
	Direct PWM Drive
	No PWM Output Either?

	Driving the Beeper
	Detecting Keypresses
	Two Outputs and Two Inputs, One Three-Pin Interface
	Taking Advantage of the Beeper's Slow Response

	Impact of Software UART
	Optional Baud Rates

	Timing Issues
	Circuit Description
	Performance
	Enhancements
	Conclusion
	Source Code Listings
	salvocfg.h
	main.c

	Build Results
	RTOS Size
	Application Size

	Schematic Diagram
	Bill of Materials
	PCB Plots
	Assembly Drawing (Component Side)
	Artwork (Layer 1 / Top)
	Artwork (Layer 2 / Bottom)

