

AN-28
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Oct 19, 2003 updated on Oct 20, 2003
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
GNU's avr-gcc C Compiler,
WinAVR and AVRStudio

Introduction
This Application Note explains how to use GNU's avr-gcc C
compiler, WinAVR and with Atmel®'s AVRStudio (all are
available1 through http://www.avrfreaks.net/) to create a
multitasking Salvo application on Atmel AVR and MegaAVR
devices.

We will show you how to build the example program located in
/salvo/ex/ex1/main.c for an Atmel AT90S8515 using WinAVR
20030913 and AVRStudio v4.07. For more information on how to
write a Salvo application, please see the Salvo User Manual.

Before You Begin
If you have not already done so, install WinAVR and AVRStudio
(WinAVR includes avr-gcc). You will also need a bash shell (or a
functionally identical Linux-like command-line environment) in
order to drive the makefile system. One is included with
WinAVR.2

Related Documents
The following Salvo documents should be used in conjunction
with this Application Note when building Salvo applications with
GNU's avr-gcc C compiler and AVRStudio:

Salvo User Manual
Salvo Compiler Reference Manual RM-GCCAVR

http://www.avrfreaks.net/

 Application Note

2 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

Additionally, the following documents (available at
http://www.avrfreaks.net/ and other locations) should be also used
in conjunction with this Application Note:

Downloading, Installing and Configuring WinAVR

Toolsets
avr-gcc is a command-line-driven C compiler. WinAVR is a
collection of command-line and Windows-based tools, some of
which serve as a front-end to avr-gcc, etc. AVRStudio is a
Windows graphical IDE.

Since these toolsets can be configured in a multitude of different
ways, this Application Note will focus on configuring the
WinAVR-based makefile system for use with Salvo, and building
applications from the command line.

Creating and Configuring a New Project
Select a directory where your project will reside (e.g. c:\temp).
You will place all of your project-specific files here.

The makefile
Each Salvo for Atmel AVR and MegaAVR distribution contains
example makefiles for the supplied projects. These makefiles are
derived from those commonly used with other avr-gcc tools, e.g.
WinAVR. Should you wish to make your own makefile, or want
to use a newer one (e.g. for the latest WinAVR release), you can
easily modify an existing makefile to fully support Salvo.

The makefile should be stored in your project directory, e.g.
c:/temp/makefile.

Tip It's much easier to start with an existing, "known-good"
makefile than to try to create your own from scratch. Therefore we
recommend that most users build an existing Salvo project first,
verify that it builds successfully, and only then consider editing
other makefiles as part of creating their own Salvo projects.

This section will examine those portions of the project's makefile
that are specific to Salvo.

http://www.avrfreaks.net/

 Application Note

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

3

Note Each distribution also includes some additional files that are
part of the Salvo makefile system for the avr-gcc C compiler. Their
operation is normally hidden from the user.

Salvo: Project-Specific makefile Symbols
Normally, you need only define or modify six makefile symbols in
order to successfully build a Salvo application with the avr-gcc
compiler. They are shown in Listing 1, and are normally at the
beginning of the makefile.

Salvo Options
This section, with its six (6) defined symbols, is all
that a Salvo user will normally need to modify when
configuring a Salvo project for use with avr-gcc

Specify Salvo install directory, eg c:/salvo
SALVO_DIR = c:/salvo

Specify Salvo project build type. This must match
your project's salvocfg.h configuration file.
Normal options are:
MAKE_WITH_FREE_LIB
MAKE_WITH_STD_LIB
MAKE_WITH_SOURCE
SALVO_BUILD_TYPE = MAKE_WITH_FREE_LIB

Specify any extra Salvo definitions (often used in projects that
are part of the standard distribution)
SALVO_EXTRA_DEFS =

Specify any other include paths the project requires
SALVO_EXTRA_INCS = c:/temp

Specify any other source files that the project requires
SALVO_EXTRA_SRCS =

Salvo Source Code Files (for source code build ONLY, from Salvo Pro).
Add whichever Salvo source code files (e.g. sched, timer, etc) your
Salvo Pro source-code build requires. Filename only -- no full paths,
no extensions.
N.B. Do not add mem -- it's already included in every Salvo build.
SALVO_SRCS = binsem event init inittask qins sched

Listing 1: Salvo makefile Preamble with User-
configurable Definitions

SALVO_DIR
SALVO_DIR tells the makefile system where Salvo is installed
(usually c:/salvo).

SALVO_BUILD_TYPE
SALVO_BUILD_TYPE tells the makefile system what kind of build
this is. The allowable values for the various Salvo distributions are
listed below:

 Application Note

4 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

SALVO_BUILD_TYPE
Salvo Lite MAKE_WITH_FREE_LIB

Salvo LE MAKE_WITH_FREE_LIB,
MAKE_WITH_STD_LIB

Salvo Pro
MAKE_WITH_FREE_LIB,
MAKE_WITH_STD_LIB,
MAKE_WITH_SOURCE

Table 1: SALVO_BUILD_TYPE Allowable Values

MAKE_WITH_FREE_LIB tells the makefile system to link to one of
Salvo's freeware libraries when building the application.
MAKE_WITH_FREE_LIB tells it to use a standard library. And
MAKE_WITH_SOURCE tells it to build the application directly from
the Salvo source files.

SALVO_EXTRA_DEFS
You can define extra, project-specific symbols via the
SALVO_EXTRA_DEFS symbol.

SALVO_EXTRA_INCS
You can specify additional directories to be searched (e.g. for
header files) via the SALVO_EXTRA_INCS symbol.

SALVO_EXTRA_SRCS
You can specify additional source files to be added to the project
via the SALVO_EXTRA_SRCS symbol.

SALVO_SRCS
When doing a Salvo source-code build with Salvo Pro, you must
define SALVO_SRCS to be all of the Salvo source files (without
pathnames or extensions) required for the project.

Note salvo/tut/tu6/sysy/makefile illustrates the use of
SALVO_EXTRA_DEFS, SALVO_EXTRA_INCS, SALVO_EXTRA_SRCS and
SALVO_SRCS.

Salvo: Additional makefile Paths and Settings
Salvo variables must be integrated into the existing makefile
variables, as shown below in Listing 2. CFLAGS and ASFLAGS are
assumed to be the names of the makefile variables that hold the

 Application Note

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

5

flags to add to the compiler and assembler command line. If the
makefile you are using doesn’t use this convention, you must make
the necessary changes.

Brings Salvo code together
N.B. Normally, there is no need to make changes to
this area!

Salvo include directory
SALVO_DIR_INC = $(SALVO_DIR)/inc

Salvo source directory
SALVO_DIR_SRC = $(SALVO_DIR)/src

Salvo library directory
SALVO_DIR_LIB = $(SALVO_DIR)/lib/gccavr

SYSY is the GNU GCC AVR Compiler -- used by Salvo projects
supplied in the distribution.
SALVO_SYS = SYSY

Command-line additional symbols and include paths for Salvo
and user source files
SALVO_ADDS = -D $(SALVO_SYS) \
 -D $(SALVO_BUILD_TYPE)=1 \
 $(patsubst %,-D %,$(SALVO_EXTRA_DEFS)) \
 $(patsubst %,-I %,$(SALVO_EXTRA_INCS)) \
 -I $(SALVO_DIR_INC)

Add in other (user) source files for this project
SRC += $(patsubst %,%,$(SALVO_EXTRA_SRCS))

Salvo's mem.c must be compiled with every Salvo project
SRC += $(SALVO_DIR_SRC)/mem.c

If we're doing a Salvo Pro source-code build, then add in
the Salvo source files the user has specified, as well
as portgccavr.S.
Pro source-code builds don't use Salvo libraries -- all
others do. Library name is found in an included makefile
listed in the targets area
ifeq ($(SALVO_BUILD_TYPE), MAKE_WITH_SOURCE)

SRC += $(patsubst %,$(SALVO_DIR_SRC)/%.c,$(SALVO_SRCS))
ASRC += $(SALVO_DIR_SRC)/portgccavr.S
SALVO_USELIBS = false

else

SALVO_USELIBS = true
SALVO_ADDS += -L $(SALVO_DIR_LIB)

endif

Compiler and Assembler get same extra flags
CFLAGS += $(SALVO_ADDS)
ASFLAGS += $(SALVO_ADDS)

Listing 2: Additional Salvo Makefile Paths and Settings

Salvo: Automatically Determining the Correct Library
The Salvo makefile system is extended via an additional makefile
in order to automatically specify the correct Salvo library when
doing a library build. The getsalvolibrary target will figure out
what the library the user has selected in the project's salvocfg.h
file. The code to do this is shown in Listing 3, and should be
included in sometime after the all target.

Automatically figures out what Salvo library to include
This file sets two variables: one is SALVO_LIB which will
have the add to the LDFLAGS variable, such as -lsfgccavr-d

 Application Note

6 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

and also adds to LDFLAGS the proper name (essentially adds
SALVO_LIB to LDFLAGS). If you are missing this file for
some reason either download it from the Pumpkin Inc website
or manually add the proper library name to LDFLAGS
N.B. Normally, there is no need to make changes to
this area!
include $(SALVO_DIR_SRC)/make/makefile_autolibs

Listing 3: Including makefile_autolibs

Salvo: Providing Feedback on the Build Process
(Optional)

The next step is purely optional, as it is used to provide user
feedback. It reports which library has been auto-detected for use in
Salvo, and Listing 4 should be included as a makefile target
sometime after the previous target.

Note: the @echo lines have tabs before them, not just four or five
spaces. Only use tabs for lines that are supposed to be executed in
makefiles.

Display Salvo options back to use to make sure they got them
right...
N.B. Normally, there is no need to make changes to
this area!
salvoecho :
 @echo ""
 @echo ""
 @echo "***** Salvo options set up in this Makefile *****"
ifeq ($(SALVO_BUILD_TYPE), MAKE_WITH_SOURCE)
 @echo "Building from source"
 else
 @echo "Library to be included is $(subst -l,lib,$(SALVO_LIB)).a"
endif
 @echo "***"
 @echo ""

Listing 4: Optional Build-Time Feedback

Salvo: Modifying the Targets
The final step is to make sure the makefile knows about these new
targets. First, modify the all target to include your new targets.
For example if previously the all target looks like Listing 5, then
after modifying it might look like Listing 6. The targets
getsalvolibrary and salvoecho are added. If you did not
include the code in Listing 4 then do not include the salvoecho
target.

Default target.
all: begin gccversion sizebefore \
 $(TARGET).elf $(TARGET).hex $(TARGET).eep \
 $(TARGET).lss sizeafter finished end

Listing 5: all Target before Modification

Default target.
all: begin gccversion sizebefore getsalvolibrary salvoecho\
 $(TARGET).elf $(TARGET).hex $(TARGET).eep \
 $(TARGET).lss sizeafter finished end

Listing 6: all Target after Modification

 Application Note

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

7

Finally, go to the end of the makefile where you will find a
.PHONY listing, these are targets that don’t affect the build process.
If you have included the salvoecho target (Listing 4) then list it
here, as shown in Listing 7.

Listing of phony targets.
.PHONY : all begin finish end sizebefore sizeafter gccversion \
coff extcoff clean clean_list program salvoecho

Listing 7: .PHONY Target after Modification

Other Makefile Settings
At this point you should have added all of the requisite Salvo-
centric symbols, rules, etc. to the project's makefile. Any other
settings (e.g. the $(TARGET) symbol) are not specific to Salvo per
se, and follow the usual rules for makefiles. Please consult the
WinAVR guide, etc. for more information on using makefiles with
the avr-gcc compiler.

Adding Salvo-specific Files to the Project
Now it's time to add any additional Salvo files your project needs.
Salvo applications can be built by linking to precompiled Salvo
libraries, or with the Salvo source code files as nodes in your
project.

Adding a Library
For a library build, Salvo's makefile system automatically figures
out the appropriate Salvo library. Therefore there is no need to
explicitly identify a library for your project.

You can find more information on Salvo libraries in the Salvo
User Manual and in the Salvo Compiler Reference Manual RM-
GCCAVR.

The salvocfg.h Header File
You will also need a salvocfg.h file for this project. To use a
typical library (e.g. libsfgccavr-a.a), your salvocfg.h should
contain only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OSA

Listing 8: salvocfg.h for a Library Build

 Application Note

8 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

Create this file and save it in your project directory, e.g.
c:/temp/salvocfg.h.

Proceed to Building the Project, below.

Adding Salvo Source Files
If you have Salvo Pro, you can do a source code build instead of a
library build. The application in /salvo/ex/ex1/main.c contains
calls to the following Salvo user services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c inittask.c
delay.c mem.c
event.c qins.c
idle.c sched.c
init.c timer.c

Salvo's mem.c module is automatically added to every project via
the makefile system. Therefore you must edit the SALVO_SRCS
symbol in the project's makefile to read:

SALVO_SRCS = binsem delay event idle init inittask qins sched timer

Listing 9: Salvo Source Files for a Source Code Build

The salvocfg.h Header File
You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 8, above). For a source code
build, the salvocfg.h for this project contains only:

#define OSBYTES_OF_DELAYS 1
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3

Listing 10: salvocfg.h for a Source Code Build

 Application Note

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

9

Create this file and save it in your project directory, e.g.
c:/temp/salvocfg.h.

Building the Project
With everything in place, you can now build the project by
invoking the makefile from the project's directory:

user@domain /cygdrive/c/temp
$ make

Listing 11: Building the Project (Default Target)

The stdout window will reflect the avr-gcc command lines:

 Application Note

10 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

set -e; avr-gcc -MM -mmcu=at90s8515 -I. -g -Os -funsigned-char
-funsigned-bitfields -fpack-struct -fshort-enums -Wall
-Wstrict-prototypes -Wa,-ahlms=c:/salvo/src/mem.lst -D SYSY -D
MAKE_WITH_FREE_LIB=1 -I c:/temp -I c:/salvo/inc -L
c:/salvo/lib/gccavr c:/salvo/src/mem.c \
| sed 's,\(.*\)\.o[:]*,\1.o \1.d : ,g' > c:/salvo/src/mem.d; \
[-s c:/salvo/src/mem.d] || rm -f c:/salvo/src/mem.d
set -e; avr-gcc -MM -mmcu=at90s8515 -I. -g -Os -funsigned-char
-funsigned-bitfields -fpack-struct -fshort-enums -Wall
-Wstrict-prototypes -Wa,-ahlms=main.lst -D SYSY -D
MAKE_WITH_FREE_LIB=1 -I c:/temp -I c:/salvo/inc -L
c:/salvo/lib/gccavr main.c \
| sed 's,\(.*\)\.o[:]*,\1.o \1.d : ,g' > main.d; \
[-s main.d] || rm -f main.d

-------- begin --------
avr-gcc --version
avr-gcc.exe (GCC) 3.3 20030421 (prerelease)
Copyright (C) 2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

rm -rf c:/salvo/src/make/salvofindlib.o
avr-gcc -c -w c:/salvo/src/make/salvofindlib.c -I . -D SYSY -D
MAKE_WITH_FREE_LIB=1 -I c:/temp -I c:/salvo/inc -L
c:/salvo/lib/gccavr -o c:/salvo/src/make/salvofindlib.o

***** Salvo options set up in this Makefile *****
Library to be included is libsfgccavr-a.a

avr-gcc -c -mmcu=at90s8515 -I. -g -Os -funsigned-char
-funsigned-bitfields -fpack-struct -fshort-enums -Wall
-Wstrict-prototypes -Wa,-ahlms=main.lst -D SYSY -D
MAKE_WITH_FREE_LIB=1 -I c:/temp -I c:/salvo/inc -L
c:/salvo/lib/gccavr main.c -o main.o
avr-gcc -c -mmcu=at90s8515 -I. -g -Os -funsigned-char
-funsigned-bitfields -fpack-struct -fshort-enums -Wall
-Wstrict-prototypes -Wa,-ahlms=c:/salvo/src/mem.lst -D SYSY -D
MAKE_WITH_FREE_LIB=1 -I c:/temp -I c:/salvo/inc -L
c:/salvo/lib/gccavr c:/salvo/src/mem.c -o c:/salvo/src/mem.o
avr-gcc -mmcu=at90s8515 -I. -g -Os -funsigned-char
-funsigned-bitfields -fpack-struct -fshort-enums -Wall
-Wstrict-prototypes -Wa,-ahlms=main.o -D SYSY -D
MAKE_WITH_FREE_LIB=1 -I c:/temp -I c:/salvo/inc -L
c:/salvo/lib/gccavr main.o c:/salvo/src/mem.o --output
main.elf -Wl,-Map=main.map,--cref -lm -lsfgccavr-a
avr-objcopy -O ihex -R .eeprom main.elf main.hex
avr-objcopy -j .eeprom --set-section-flags=.eeprom="alloc,load"
\
--change-section-lma .eeprom=0 -O ihex main.elf main.eep
avr-objdump -h -S main.elf > main.lss
Size after:
main.elf :
section size addr
.text 1554 0
.data 0 8388704
.bss 45 8388704
.noinit 0 8388749
.eeprom 0 8454144
.stab 2760 0
.stabstr 4040 0
Total 8399

Errors: none
-------- end --------

Listing 12: Build Results for A Successful Library Build

 Application Note

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

11

The build directory can be "cleaned" prior to a build using:

user@domain /cygdrive/c/temp
$ make clean

Listing 13: Cleaning the Project Directory

This is especially useful when switching between library and
source-code builds.

Testing the Application
You can test and debug this application with full source code
integration in AVRStudio. But first, after making the application,
you must generate an appropriately debug-enabled output file, via:

user@domain /cygdrive/c/temp
$ make extcoff

Listing 14: Building for Symbol Debugging with
AVRstudio v4.07

This will generate an extended COFF-format file for AVRStudio.

Launch AVRStudio. When prompted, open the COFF (.cof) file
you just created:

Figure 1: Opening the COFF File for Symbolic

Debugging

Click Open. Under Debug Platform select AVR Simulator, and
under Device select AT90S8515:

 Application Note

12 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

Figure 2: Selecting the ToolSuite in the Project Wizard

Click Finish. AVR Studio will load the .cof object file and
position the runtime / debugging cursor at the start of the project's
main(). You can then step through each source-code module in the
project:

Figure 3: Source-Level Debugging in AVRStudio's

Simulator

For example, to measure a delay period in the simulator, expand
the Processor tab in the Workspace window so that the Stop
Watch feature is visible. After a successful build, open the
project's main.c (i.e. /temp/main.c), set a breakpoint on the
PORTB ^= 0x08; line of Task3(), and select Debug → Run.
After a while, program execution will stop at the breakpoint in
Task3(). Now zero the stopwatch in the Stop Watch window by
double-clicking on it, and right-click to select Stop Watch: show
as milliseconds. Select Debug → Run again, and wait until
execution stops. The Stopwatch window now displays an elapsed
time of 400ms (40 times 10ms, the Timer0-driven system tick rate
in this application for a 4MHz clock).

 Application Note

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

13

Figure 4: Measuring 400ms of Task Delay in the

Simulator via a Breakpoint

Note The 630 microseconds (i.e. 400.00ms – 399.37ms) that are
"short" in the Stop Watch window of Figure 4 are due to the way
the hardware timer was initialized in this application – the actual
timer period is 1/(4.000MHz/1024/(38+1)) = 9.984ms, and 40 *
9.984ms = 399.36ms. See the Salvo User Manual for more
information on the system timer.

Stepping Through Salvo Source Code
If you have Salvo Pro and are doing a full source-code build, or a
debug-enabled library build, you can also trace program execution
through the Salvo source code. Select Debug → Reset, Debug
→ Remove Breakpoints, and set a breakpoint at the first call to
OSCreateTask() in main.c. Select Debug → Run. Execution
will stop in main.c at the call to OSCreateTask(). Now choose
Debug → Step Into. The /salvo/src/inittask.c file window
will open, and you can step through and observe the operation of
OSCreateTask().

 Application Note

14 AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

Figure 5: Stepping Through Salvo Source Code

Troubleshooting

Errors Reported by make
The Salvo makefile system for avr-gcc requires only a properly
defined salvocfg.h (see the Salvo Compiler Reference Manual
RM-GCCAVR for more information) and the additions to the
WinAVR-style makefile outlined above, in addition to a properly
installed Salvo for Atmel AVR and MegaAVR distribution.

When reviewing make's output in case of a build error, ensure that:

• the Salvo path is set correctly (i.e. the –I and –L
command-line arguments to avr-gcc point to a valid
Salvo installation)

• the symbol SYSY is defined (i.e. –D SYSY)
• there is a MAKE_WITH_XYZ symbol defined
• for Salvo Pro source-code builds, all of the necessary

Salvo source modules are listed in the
$(SALVO_SRCS) makefile symbol

Tip All of these will be in place if you start with a makefile from
an existing Salvo SYSY project.

Example Projects
Example projects for GNU's avr-gcc C compiler can be found in
the salvo/ex/ex1/sysy and salvo/tut/tu1-6/sysy

 Application Note

AN-28 Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio

15

directories. A single makefile handles Salvo Lite, Salvo LE and
Salvo Pro builds. Each makefile (and hence, each project) defines
the SYSY symbol.

Credits & Acknowledgements
Colin O'Flynn wrote the Salvo context switcher in portgccavr.S,
created the Salvo project makefile system, and wrote much of the
documentation surrounding the Salvo port to GNU's avr-gcc
compiler. Colin is active in the AVR community and is the author
of various AVR-centric material to be found at the popular AVR
Freaks (http://www.avrfreaks.net/) website.

1 Additionally, WinAVR is available at http://winavr.sourceforge.net/.
2 Another shell is the Cygwin (http://www.cygwin.com/) bash shell for

Windows, and is the one used here.

http://www.avrfreaks.net/

	Building a Salvo Application with GNU's avr-gcc C Compiler, WinAVR and AVRStudio
	Introduction
	Before You Begin
	Related Documents
	Toolsets
	Creating and Configuring a New Project
	The makefile
	Salvo: Project-Specific makefile Symbols
	SALVO_DIR
	SALVO_BUILD_TYPE
	SALVO_EXTRA_DEFS
	SALVO_EXTRA_INCS
	SALVO_EXTRA_SRCS
	SALVO_SRCS

	Salvo: Additional makefile Paths and Settings
	Salvo: Automatically Determining the Correct Library
	Salvo: Providing Feedback on the Build Process (Optional)
	Salvo: Modifying the Targets
	Other Makefile Settings

	Adding Salvo-specific Files to the Project
	Adding a Library
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Stepping Through Salvo Source Code

	Troubleshooting
	Errors Reported by make

	Example Projects
	Credits & Acknowledgements

