

AN-16
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Apr 24, 2002 updated on Jul 28, 2003
All trademarks mentioned herein are properties of their respective companies.

Salvo Messages, Memory Models
and Keil's Cx51 C Compiler

Introduction
One of the many attractions of Salvo, The RTOS that runs in tiny
places™, is how easy it makes intertask communications, e.g. by
enabling you to pass messages between tasks.

The 8051 and its derivatives support a wide range of memory
areas, including internal and external data memory. Through the
use of language extensions called memory types, Keil's Cx51
compiler enables you as the programmer to place variables in these
data memory areas. Salvo messages use message pointers, which
can point to anywhere in RAM or ROM. Therefore to use
messages, you must be comfortable with pointers and Cx51's
memory types.

This Application Note explains how to use Salvo message pointers
with Cx51's various memory models.

Default Memory Types
When building an application with Cx51, you must specify the
memory model to be used. SMALL, COMPACT and LARGE are the
choices.1 The memory model affects the location of each declared
variable, function argument and automatic variable unless its
memory type (see Cx51's Explicitly Declared Memory Types,
below) has been explicitly specified. Cx51's default memory types
are listed in Table 1:

 Application Note

2 AN-16 Salvo Messages, Memory Models and Keil's Cx51 C Compiler

Memory
Model

Default
Memory Type

RAM Memory
Area Used Accessed via

SMALL data internal,
0x00-0x7F

direct

COMPACT pdata
external,

0xXX00-0xXXFF
2

MOVX @Rn3

LARGE xdata external MOVX @DPTR

Table 1: Default Memory Types for Selected Memory
Model

Cx51's Explicitly Declared Memory Types
As illustrated in Table 1, changing the memory model alters the
default memory type, and thereby the location of any objects
(declared variables, function arguments and/or automatic
variables) lacking an explicitly declared memory type. This affects
the use of pointers and their proper declaration.

In all of Cx51's memory models, the default memory type can be
overridden on a per-object basis by explicitly declaring the object's
memory type (and hence its location) using one of Cx51's code,
data, idata, bdata, xdata, far or pdata memory types.

Simply Typed Objects
Below are some simple variable declarations in C. First, here's a
long int located in directly accessible internal data memory:

long int data pos;

Here's an int in indirectly accessible internal data memory:

int idata mem;

Here's an array of static chars (a string) in external data
memory:

static char xdata strRc[SIZEOF_STR_RESP+1] = "\0";

These examples are easily understood, and once declared with the
proper memory type, you can access an object without worrying
which memory area it's located in.

You can use C's typedef to make your code easier to read and
more robust. For example,

 Application Note

AN-16 Salvo Messages, Memory Models and Keil's Cx51 C Compiler

3

typedef char data TYPE_DATA;

defines a type TYPE_DATA of char objects in directly accessible
internal data memory. Declaring

TYPE_DATA temp1, temp2, temp3, temp4;

will place four char variables named temp1-temp4 in the first 128
bytes of the 8051's internal RAM. You can now use TYPE_DATA
throughout your code when declaring char variables in directly
accessible internal data memory. If you choose to move all of those
variables to another memory area, then changing the data memory
type in the typedef is all that is necessary.

Pointers, Explicitly Typed Pointers and Pointers to
Explicitly Typed Objects

Learning to use pointers with the various memory types may
require additional study. Here's an idata pointer to a char data.
Both the pointer and the char are located in internal memory:

char data * idata charP;

Here's an xdata pointer to a data char, i.e. the pointer is located in
external RAM, but the char it points to is in internal RAM:

char data * xdata charP;

This is the same thing:

data char * xdata charP;

Here's a pointer to a char, both of which are in external RAM:

char xdata * xdata charP;

Lastly, here's a pointer to a pointer to a char, all in separate RAM
areas:

char data * idata charP * xdata charPP;

Salvo's Message Pointers
Suppose you're using a Salvo message queue to communicate
between two tasks. Assume you are using the SMALL memory
model. You have an array in external memory, e.g.:

 Application Note

4 AN-16 Salvo Messages, Memory Models and Keil's Cx51 C Compiler

char xdata myArray[6];

that contains one-character commands.

Note The explicit xdata in the declaration of myArray[]
overrides the SMALL memory model's default memory type of data
for the variable myArray[].

You pass those commands, one at a time, via a message queue, to
another task:

OSSignalMsgQ(MSGQ1, (OStypeMsgP) &myArray[i]);

Each element of the message queue is a Salvo message pointer of
type OStypeMsgP, usually predefined as void *, i.e. a pointer to
anything. The power of using message pointers becomes apparent
when you realize that there are no restrictions on what a message
pointer can point to. It can point to a char, an int, a const, a
structure, another pointer, a function, etc. As long as both parties
agree on what a particular message points to, the information will
pass correctly from sender to receiver.

In the example above, the messages in the message queue are
pointers to an array of char in external memory. The
(OStypeMsgP) typecast is used in OSSignalMsgQ() to convert
&myArray[i], which is a pointer to a char in external memory,
into a message pointer. When another task receives the message, it
will have to convert (via another typecast4) the pointer back to the
appropriate type before dereferencing it:

void TaskRcv (void)
{
 char cmd;
 OStypeMsgP msgP;

 for (;;)
 {
 OS_WaitMsgQ(MSGQ1, &msgP, TaskRcv2);
 cmd = * (char *) msgP; /* wrong! */
…

Sadly, the typecast above is not entirely correct. That's because
we're asking the Cx51 compiler to convert a message pointer to a
char pointer (i.e. a pointer to a char in internal memory),5 when
what we really want is a char xdata pointer! Why? Because
myArray[] is located in external memory, and we need the Cx51
compiler to treat msgP as if it's a pointer to a char object in
external memory before dereferencing it. The correct line is:

 Application Note

AN-16 Salvo Messages, Memory Models and Keil's Cx51 C Compiler

5

 cmd = * (char xdata *) msgP;

We could have avoided this confusion by defining:

typedef char xdata myBank1Array;

by declaring:

myBank1Array myArray[6];

and by writing:

cmd = * (myBank1Array *) msgP;

when dereferencing the message pointer.

Effect of Selecting a Different Memory Model
In example above, had we declared myArray[6] as char (no
xdata), and we used the SMALL memory model, then the simple
message pointer dereferencing of cmd = * (char *) msgP would
have worked properly.

If we then changed to the LARGE model, myArray[] would be
located in external memory, and the dereferencing would not work
properly at runtime. That's because the change in memory model
(SMALL to LARGE) resulted in a change in default memory type
(data to xdata), and myArray[] – lacking an explicit memory
type in its declaration – follows the default memory type of the
memory model selected. Yet the typecast – (char *) – remained
unchanged, still assuming that myArray[] was of type char, not
char xdata.

Therefore we recommend explicit memory types and typedefs
when any sort of pointer dereferencing is required so as to avoid
any problems when changing memory models.

Conclusion
Your application's RAM objects will be located in the 8051's
internal and/or external memory space based on the Cx51 memory
model you select and any explicit memory types you employ. If
you use pointers to access those objects, or if you use Salvo's
messaging services, you need to pay close attention to declarations
and typecasts to ensure that your pointers are pointing to what you
think they're pointing to. Failing to explicitly declare memory
types may lead to problems when switching between memory

 Application Note

6 AN-16 Salvo Messages, Memory Models and Keil's Cx51 C Compiler

models.6 Using typedef can help you avoid certain common
mistakes.

Acknowledgements
Dan Henry, for issues surrounding the COMPACT memory model,
and others.

References
Keil Elektronik GmbH. and Keil Software, Inc., Cx51 Compiler
User's Guide, 5.2001.

1 SMALL is the default and is recommended for most applications.
2 XX represents the most significant 8 bits of the 16-bit external address and is

asserted by P2.
3 Where n is 0 or 1, i.e. R0 or R1 contains the lower 8 bits of the 16-bit address.
4 Typecasting is a compile-time, not a real-time operation. Therefore it has no

effect on run-time performance per se.
5 Internal memory / data space because of the SMALL model.
6 From a performance standpoint, it's best to always explicitly declare the

memory types of pointers in C51.

	Salvo Messages, Memory Models and Keil's Cx51 C Compiler
	Introduction
	Default Memory Types
	Cx51's Explicitly Declared Memory Types
	Simply Typed Objects
	Pointers, Explicitly Typed Pointers and Pointers to Explicitly Typed Objects

	Salvo's Message Pointers
	Effect of Selecting a Different Memory Model

	Conclusion
	Acknowledgements
	References

