

AN-15
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Apr 8, 2002 updated on Jul 23, 2003
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
IAR's MSP430 C Compiler and
Embedded Workbench IDE

Introduction
This Application Note explains how to use IAR's
(http://www.iar.com/) MSP430 C compiler and Embedded
Workbench IDE to create a multitasking Salvo application for
Texas Instruments' (http://www.ti.com/) MSP430 ultra-low-power
microcontrollers.

We will show you how to build the Salvo application contained in
\salvo\ex\ex1\main.c for an MSP430F149 using IAR
Embedded Workbench for MSP430.

Note IAR Embedded Workbench underwent substantial changes
between v1 (EW 2.3, with the last version of the compiler being
v1.25B) and v2 (EW 3.2, with v2.x compilers, e.g. v2.10A). The
procedures and illustrations in this document are from IAR
Embedded Workbench for MSP430 v1 and the associated IAR
MSP430 C compiler v1.25B. Where substantive differences exist,
they will be noted as such.

For more information on how to write a Salvo application, please
see the Salvo User Manual.

Before You Begin
If you have not already done so, install the IAR Embedded
Workbench for the MSP430. If necessary, you should also upgrade
to the latest TI MSP430 simulator, available from the TI website at
http://www.ti.com/sc/msp430.

http://www.iar.com/
http://www.ti.com/
http://www.ti.com/sc/msp430

 Application Note

2 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with IAR's
MSP430 C compiler:

Salvo User Manual
Salvo Compiler Reference Manual RM-IAR430

Creating and Configuring a New Project
Create a new Embedded Workbench project under File → New →
Project → OK. Select MSP430 as the Target CPU Family,
navigate to your working directory (in this case we've chosen
c:\temp) and create a project named myex1.prj:

Figure 1: Creating the New Project

Click Create to continue. Choose File → Save to save the
project.

Note In Embedded Workbench for MSP430 v2, first you create a
workspace, and then you create one or more projects within that
workspace.

In order to manage your project effectively, we recommend that
you create a set of groups for your project. They are:

Listings
Salvo Configuration File
Salvo Help Files
Salvo Libraries
Salvo Sources
Sources

 Application Note

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

3

For each group, choose Project → New Group, add in the Group
Name and select OK.

Figure 2: Creating a Group

When finished, your project window should look like this:

Figure 3: Project Window with Groups

Now let's setup the project's options for Salvo's pathnames, etc. for
your particular MSP430 microcontroller. Select Project →
Options → ICC430 → #define and define any symbols you may
need for your project.1 Select Project → Options → ICC430 →
Include and add the include paths $PROJ_DIR$\ and
c:\salvo\inc\:

 Application Note

4 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

Figure 4: ICC430 Settings – Project Include Paths

Next, select XLINK → List → Generate Linker listing. This will
create a useful .map file with the application's ROM and RAM
requirements, etc. Under XLINK → Include, select XCL file
name → Override default and select the .xcl linker filename2
that matches your target processor.3

Figure 5: XLINK Settings – Project XCL File Name

Lastly, under C-SPY → Setup, select the Driver (Flash
Emulation Tool, ROM Monitor or Simulator) and select Chip
Description → Use description file and select the appropriate
description file for your MSP430:

 Application Note

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

5

Figure 6: C-SPY Settings – Project Chip Description File

Select OK to finish configuring your project.

Adding your Source File(s) to the Project
Now it's time to add files to your project. Choose Project → Files,
C/C++ Source Files (*.c,*.cpp,*.cc) under Files of type, select
Sources under Add to Group, navigate to your project's
directory, select your main.c and Add. Your Project Files
window should look like this:

 Application Note

6 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

Figure 7: Project Files Window

When finished, select Done, and your project window should look
like this:

Figure 8: Project Window with Project-Specific Source

Files

Adding Salvo-specific Files to the Project
Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries,
or with the Salvo source code files as nodes in your project.

Adding a Library
For a library build, a fully-featured Salvo freeware library for the
MSP430 is sfiar430-a.r43.4 Select Project → Files,

 Application Note

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

7

Library/Object Files (*.r*) under Files of type, Salvo Libraries
under Add to Group, navigate to the \salvo\lib\iar430-v1
directory, select sfiar430-a.r43 and Add:

Figure 9: Adding the Library to the Project

Note Salvo libraries for IAR's v1.x MSP430 C compilers are
located in \salvo\lib\iar430-v1. Libraries for v2.x compilers
are located in \salvo\lib\iar430-v2. The libraries are not
interchangeable.

Select Done when you are finished. You can find more
information on Salvo libraries in the Salvo User Manual and in the
Salvo Compiler Reference Manual RM-IAR430.

Adding Salvo's mem.c
Salvo library builds also require Salvo's mem.c source file as part
of each project. Choose Project → Files, C/C++ Source Files
(*.c,*.cpp,*.cc) under Files of type, select Salvo Sources under
Add to Group, navigate to \salvo\src, select mem.c and Add.
Your Project Files window should look like this:

 Application Note

8 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

Figure 10: Project Files Window

When finished, select Done, and your project window should look
like this:

Figure 11: Project Window with Library, mem.c and User

Source File(s)

The salvocfg.h Header File
You will also need a salvocfg.h file for this project. To use the
library selected in Figure 9, your salvocfg.h should contain only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OSA

Listing 1: salvocfg.h for a Library Build

 Application Note

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

9

Select Project → Files, All Files (*.*) under Files of type, Salvo
Configuration File under Add to Group, navigate to your
project's directory, select salvocfg.h and Add:

Figure 12: Adding the Configuration File to the Project

Your project window should now look like this:

Figure 13: Project Window for a Library Build

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for editing, etc.

Proceed to Building the Project, below.

 Application Note

10 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

Adding Salvo Source Files

If you have a Salvo distribution that contains source files, you can
do a source code build instead of a library build. The application in
\salvo\ex\ex1\main.c contains calls to the following Salvo user
services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c mem.c
delay.c portiar430.s43
event.c qins.c
idle.c sched.c
init.c timer.c
inittask.c

To add these files to your project, select Project → Files, All
Files (*.*) under Files of type, Salvo Sources under Add to
Group:, navigate to the \salvo\src directory, select5 the files
listed above and Add:

 Application Note

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

11

Figure 14: Adding Salvo Source Files to the Project

Select Done when finished. Your project window should now look
like this:

Figure 15: Project Window for a Source Code Build

The salvocfg.h Header File
You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the salvocfg.h for this project contains only:

#define OSBYTES_OF_DELAYS 1
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3

Listing 2: salvocfg.h for a Source Code Build

Building the Project
For a successful compile, your project must also include a header
file (e.g. #include <msp430x14x.h>) for the particular chip you
are using. Normally, this is included in each of your source files
(e.g. main.c), or in a header file that's included in each of your
source files (e.g. main.h).

With everything in place, you can now build the project using
Project → Make or Project → Build All. The build results can
be seen in the map file located in the project's Debug\List
subdirectory:6

 Application Note

12 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

IAR Universal Linker V4.53G/WIN #

Link time = 17/Apr/2002 10:33:44 #
Target CPU = MSP430 #
List file = C:\temp\Debug\List\myex1.map #
Output file 1 = C:\temp\Debug\Exe\myex1.d43 #
Format: debug #
UBROF version 6.0.0 #
Using library modules for C-SPY (-rt) #
Command line = C:\temp\Debug\Obj\binsem.r43 #
C:\temp\Debug\Obj\delay.r43 #
C:\temp\Debug\Obj\event.r43 #
C:\temp\Debug\Obj\init.r43 #
C:\temp\Debug\Obj\inittask.r43 #
C:\temp\Debug\Obj\mem.r43 #
C:\temp\Debug\Obj\portiar430.r43 #
C:\temp\Debug\Obj\qins.r43 #
C:\temp\Debug\Obj\sched.r43 #
C:\temp\Debug\Obj\timer.r43 #
C:\temp\Debug\Obj\main.r43 -o #
C:\temp\Debug\Exe\myex1.d43 -rt -l #
C:\temp\Debug\List\myex1.map -xms #
-IC:\IAR\EW23\430\LIB\ -f #
C:\IAR\EW23\430\icc430\msp430F123C.xcl #
(-cMSP430 -Z(DATA)UDATA0,IDATA0,ECSTR=0200-02FF #
-Z(DATA)CSTACK#0200-0300 -Z(CODE)INFO=1000-10FF #
-Z(CODE)CODE,CONST,CSTR,CDATA0,CCSTR=E000-FFDF #
-Z(CODE)INTVEC=FFE0-FFFF #
-e_small_write=_formatted_write #
-e_medium_read=_formatted_read cl430.r43) #

Copyright 1987-2001 IAR Systems. All rights reserved. #

[SNIP]

 **
 * *
 * SEGMENTS IN ADDRESS ORDER *
 * *
 **

SEGMENT SPACE START ADDRESS END ADDRESS SIZE TYPE ALIGN
======= ===== ============= =========== ==== ==== =====
UDATA0 0200 - 022B 2C rel 1
ECSTR 022C rel 1
IDATA0 022C rel 1
CSTACK 0300 rel 1
INFO 1000 dse 0
CODE E000 - E551 552 rel 1
CSTR E552 dse 0
CDATA0 E552 rel 1
CCSTR E552 rel 1
CONST E552 dse 0
INTVEC FFE0 - FFFF 20 com 1

 **
 * *
 * END OF CROSS REFERENCE *
 * *
 **

 1 394 bytes of CODE memory
 44 bytes of DATA memory

Errors: none
Warnings: none

Listing 3: Source Code Build Results (Abbreviated)

Note The Embedded Workbench for MSP430 projects supplied
in the Salvo for TI's MSP430 distributions contain additional help
files in each project's Salvo Help Files group.

Tip If you configure Embedded Workbench to display the
memory utilization for individual source files and the complete
application you won't have to look in the map file. Select Options
→ Settings → Make Control → Message Filtering Level and
choose All.

 Application Note

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

13

Testing the Application
You can test and debug this application using the C-SPY debugger
and either the simulator or the Flash Emulation Tool. To launch C-
SPY, choose Project → Debugger.

You can use all of C-SPY's supported features when debugging
and testing Salvo applications. This includes breakpoints, profiling,
intelligent watch window, cycle counting, etc.

Figure 16: Testing a Salvo Application in C-SPY

Note C-SPY supports debugging at the source code level. Only
applications built from the Salvo source code or a Salvo Pro library
enable you to step through Salvo services (e.g.
OSCreateBinSem()) at the source code level. Regardless of how
you build your Salvo application, you can always step through
your own C and assembly code in C-SPY.

Migrating to Embedded Workbench for MSP430 v2
Existing Salvo applications built as projects (*.pjt) under IAR's
Embedded Workbench for MSP430 v1 can be migrated to v2 using
the following steps.

 Application Note

14 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

• In Embedded Workbench for MSP430 v2, choose
File → New → Workspace to create a new
workspace file (*.eww).

• Choose File → Insert Project into the
Workspace�, select Files of type: Old Project
Files (*.prj), navigate to the old project and select
Open, then OK.

• Under Project → Options, select the device (e.g.
MSP430F149) under General → Target → Device.
Set the desired optimizations under ICC430 → Code
→ Optimizations. Under XLINK → Include, ensure
that the XCL file name is not overridden and/or a
valid filename is used.

• Remove the existing Salvo library from the project,
and replace it with a same-named one from
\salvo\lib\iar430-v2.

When finished, the new project window will look like this:

Figure 17: Project Window for a Library Build in

Embedded Workbench for MSP430 v2

Troubleshooting

Linker Error: Undefined External (version number)
If you are doing a library build and your version of the IAR
MSP430 C Compiler is different from that used to build the Salvo
libraries, the linker will issue an error like this one:7

 Application Note

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

15

Figure 18: Linker Error due to Version Mismatch

This type of error occurs because the Salvo library – in this case,
sliar430-e.r43 – references an external symbol (here,
?CL430_1_25_L08) which is not defined by the version of the
compiler you are using. The library references this symbol because
it was built with a different version of the IAR MSP430 C
compiler. The solution is simply to define this symbol at link time
by using Project → Options → XLINK → #define and then
assigning a value of 1 to the symbol:

Figure 19: Setting the Link-time Version Number

External Symbol

Once this symbol is defined, you'll be able to build your
application successfully.

Note This solution should work as long as the major version
number of the IAR MSP430 C Compiler you're using matches that
used to generate the Salvo libraries. E.g. v1.23A can be used with
Salvo libraries built with v1.26A.8

Version mismatches like this will occur whenever Salvo users and
the Salvo for TI's MSP430 distribution are at different versions of
the IAR MSP430 C compiler. While this solution is unlikely to

 Application Note

16 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

cause any problems, we strongly recommend that Salvo users keep
their IAR MSP430 C compiler up-to-date to avoid any potential
difficulties.

This type of linker error will not happen with source code builds,
e.g. when using Salvo Pro to build an application using the Salvo
source files as project nodes instead of linking to a Salvo library.

Application Crashes After Changing Processor Type
Remember to #include the appropriate header file for your
MSP430 variant (see Building the Project, above). While the
common SFR locations are consistent across the entire MSP430
family, the interrupt vectors are not. Therefore mainline code may
work correctly, but the application will crash if interrupt vectors
are not in the right locations.

Example Projects
Example projects for IAR's MSP430 C compiler can be found in
the \salvo\tut\tu1-6\sysq directories. The include path for
each of these projects includes \salvo\tut\tu1\sysq, and each
project defines the SYSQ symbol.

Complete projects using Salvo freeware libraries are contained in
the project files \salvo\tut\tu1-6\sysq\tu1-6lite.*. These
projects also define the MAKE_WITH_FREE_LIB symbol.

Complete projects using Salvo standard libraries are contained in
the project files \salvo\tut\tu1-6\sysq\tu1-6le.*. These
projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo source code are contained in the
project files \salvo\tut\tu1-6\sysq\tu1-6pro.*. These
projects also define the MAKE_WITH_SOURCE symbol.

Note Tutorial projects are provided for IAR Embedded
Workbench for MSP430 v1 (*.prj files) IAR Embedded
Workbench for MSP430 v2 (*.ewp & *.eww files).

1 This Salvo project supports a wide variety of targets and compilers. For use

with IAR's MSP430 compiler, it requires the SYSQ defined symbol, as well as

 Application Note

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

17

the symbols MAKE_WITH_FREE_LIB or MAKE_WITH_STD_LIB for library
builds. When you write your own projects, you may not require any symbols.

2 .xcl filenames ending in 'C' appear to be for C-language projects. Those
ending in 'A' appear to be for assembly-language projects.

3 We recommend using the Embedded Workbench's argument variables like
$PROJ_DIR$ and $TOOLKIT_DIR$ whenever possible.

4 This Salvo Lite library contains all of Salvo's basic functionality. The
corresponding Salvo LE and Pro libraries are sliar430-a.r43 and
sliar430ia.r43, respectively.

5 You can Ctrl-select multiple files at once.
6 We recommend that you add the project's map file to your project's Listings

group.
7 This example was generated using the IAR MSP430 C Compiler v1.26A, with

Salvo LE for TI's MSP430 v3.0.3, which was built using v1.25A. Hence the
_1_25_ (for v1.25) in the undefined external symbol.

8 In this example, the major version number is 1.

	Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	Adding Salvo-specific Files to the Project
	Adding a Library
	Adding Salvo's mem.c
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Migrating to Embedded Workbench for MSP430 v2
	Troubleshooting
	Linker Error: Undefined External (version number)
	Application Crashes After Changing Processor Type

	Example Projects

