PUMPKIN | AN-15

Application Note

750 Naples Street ¢ San Francisco, CA 94112 < (415) 584-6360 < http://www.pumpkininc.com

Building a Salvo Application with
IAR's MSP430 C Compiler and
Embedded Workbench IDE

Introduction

Before You Begin

This Application Note explans how to use IAR's
(http://www.iar.com/) MSP430 C compiler and Embedded
Workbench IDE to create a multitasking Salvo application for
Texas Instruments' (http://www.ti.com/) MSP430 ultra-low-power
microcontrollers.

We will show you how to build the Salvo application contained in
\salvolex\exl\main.c for an MSP430F149 using IAR
Embedded Workbench for M SP430.

Note IAR Embedded Workbench underwent substantial changes
between v1 (EW 2.3, with the last version of the compiler being
v1.25B) and v2 (EW 3.2, with v2.x compilers, e.g. v2.10A). The
procedures and illustrations in this document are from IAR
Embedded Workbench for MSP430 v1 and the associated IAR
MSP430 C compiler v1.25B. Where substantive differences exist,
they will be noted as such.

For more information on how to write a Salvo application, please
see the Salvo User Manual.

If you have not aready done so, install the IAR Embedded
Workbench for the MSP430. If necessary, you should also upgrade
to the latest TI MSP430 simulator, available from the Tl website at
http://www.ti.com/sc/msp430.

created by Andrew E. Kalman on Apr 8, 2002 updated on Jul 23, 2003
All trademarks mentioned herein are properties of their respective companies.

http://www.iar.com/
http://www.ti.com/
http://www.ti.com/sc/msp430

PUMPKIN

Application Note

Related Documents

The following Salvo documents should be used in conjunction
with this manua when building Salvo applications with IAR's
MSP430 C compiler:

Salvo User Manual
Salvo Compiler Reference Manual RM-IAR430

Creating and Configuring a New Project

Create a new Embedded Workbench project under File — New —
Project — OK. Select MSP430 as the Target CPU Family,
navigate to your working directory (in this case we've chosen
c:\tenp) and create a project named nmyex1. prj :

New Project 2=
Target CPU Family:
[MsP430 =
Sovein [= &l @ e
|1 aother
File hame: Imyex1 Rl Create |
Save as ype: IPrDjeUtFiIeS .pri) j Cancel |

Figure 1: Creating the New Project

Click Create to continue. Choose File — Save to save the
project.

Note In Embedded Workbench for MSP430 v2, first you create a
workspace, and then you create one or more projects within that
workspace.

In order to manage your project effectively, we recommend that
you create a set of groups for your project. They are:

Listings

Salvo Configuration File
Salvo Help Files

Salvo Libraries

Salvo Sources

Sources

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

PUMPKIN Application Note

For each group, choose Project — New Group, add in the Group

Name and select OK.
Grougp Marme: ok |
ILlstmgs
Add to Targets Cancel

Figure 2: Creating a Group

When finished, your project window should look like this:

B myex1.pr o]
Targets: IDebug j ﬂl
=43 Debug

[Listings

-1 Sako Configuration File
CI Sako Help Files

CI Saksa Libraries

CI Sabo Sources

.17 Sources

Figure 3: Project Window with Groups

Now let's setup the project's options for Salvo's pathnames, etc. for
your particular MSP430 microcontroller. Select Project —
Options — ICC430 — #define and define any symbols you may
need for your project.’ Select Project — Options — 1CC430 —
Include and add the include paths $PRQJ_DIR$\ and
c:\sal vo\inc\:

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE 3

PUMPKIN

Application Note

Options For Target "Debug” x|
Category: Factary Settings |
General Code Generationl Diahug | #definel List | #undef Include |
Q:‘IETLJDK Include paths: (one per ling)
capy $PROJ_DIRS, |

chsaleoling
$TOOLKIT_DIF$ inch,
J -|
K | Cancel |

Figure 4: ICC430 Settings — Project Include Paths

Next, select XLINK — List — Generate Linker listing. This will
create a useful . map file with the application's ROM and RAM
requirements, etc. Under XLINK — Include, select XCL file
name — Override default and select the . xcl linker filename®
that matches your target processor.?

Options For Target "Debug" K3
Categary: Factory Settings |
%%rlgnal Output |#define| Diagnost\cs' List Include |Input | Processing'

30 Include paths: (one perling)
C-5PY $TOOLKIT_DIR$LIBY ;I
H
—#CLfile name
W Creride default
$TOOLKIT_DIR$,iccd30tmep430F149Cxcl J
Ok | Cancel |

Figure 5: XLINK Settings — Project XCL File Name

Lastly, under C-SPY — Setup, select the Driver (Flash
Emulation Tool, ROM Monitor or Simulator) and select Chip
Description — Use description file and select the appropriate
description file for your M SP430:

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

Application Note

{'4|r

I
{ $TOOLKIT_DIRS,cwd30mepd30F1 48.dok |_

Figure 6: C-SPY Settings — Project Chip Description File

Select OK to finish configuring your project.

Adding your Source File(s) to the Project

Now it'stimeto add files to your project. Choose Project — Files,
C/C++ Source Files (*.c,*.cpp,*.cc) under Files of type, select
Sources under Add to Group, navigate to your project's
directory, select your main.c and Add. Your Project Files
window should look like this:

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

PUMPKIN

on Note

Project Files 2

Lookin: | terp | &\ =il

File name: |main.c

Files of type: IC:’C++ Source Files (*c*cpp*co) j

Add to Group:

ISDurces j

Files in Group:

Cihitempimain.c Add
Addd All
Bemove

Remove All

Done | Cancel |

Figure 7: Project Files Window

17 ex]liteprj I =1 ES
Targets: IDehug j ﬂl
E-a Debug

/23 Listings

a Sako Configuration File
{3 Saka Halp Files

Sabso Libraries

; Sahwo Sources

253 Sources

- mainc

When finished, select Done, and your project window should look
likethis:

Figure 8: Project Window with Project-Specific Source

Files

Adding Salvo-specific Files to the Project

Adding a Library

MSP430 is

Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries,
or with the Salvo source code files as nodes in your project.

For a library build, a fully-featured Salvo freeware library for the
sfiar430-a.r43.* Select Project

6 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

— Files,

PUMPKIN

Application Note

Library/Object Files (*.r*) under Files of type, Salvo Libraries
under Add to Group, navigate to the \'sal vo\li b\i ar430-v1
directory, select sfi ar 430-a. r 43 and Add:

Project Files

Lookin: |3 iard30v1

= &l ol ol B

&) sfiard30-a.rdd
[sfizr430-d.rd3
[sfiar430-e.r43
=] sfiar430-m.r43
=] sfiar430-t.r43

File name: |

Files of type: |Library/Object Files () =l

Add to Group:

ISa\vo Libraries

Files in Group:

[

Chsaleotlibyiard30-1\sfiard30-a r43 Add

Al All
Eemove

Eemowve All

Dione | Cancel |

Figure 9: Adding the Library to the Project

Note Salvo libraries for IAR's vi.x MSP430 C compilers are
located in \'sal vo\li b\iar430-v1. Libraries for v2.x compilers
are located in \salvo\lib\iar430-v2. The libraries are not

interchangeable.

Select Done when you are finished. You can find more
information on Salvo libraries in the Salvo User Manual and in the

Salvo Compiler Reference Manual RM-1AR430.

Adding Salvo's mem.c

Salvo library builds also require Salvo's mem ¢ source file as part
of each project. Choose Project — Files, C/C++ Source Files
(*.c,*.cpp,*.cc) under Files of type, select Salvo Sources under
mem ¢ and Add.

Add to Group, navigate to \ sal vo\src, select
Y our Project Files window should look like this:

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

PUMPKIN Application Note

Project Files 2
Lookin: | i s i & ekl
array.c cyclich.c eflag.c inittch.c 8] i
[E] binsem.c B cyclich.c [®] eflag2.c [®]license.c Gt
[E] hinsem?2.c B cyclic?.c [®]id.c [®]merm.c [®
& chk.c E]debug.c [®]eventc [®]mso.c [®
& cyclic.c E]delay.c [®idlec [msg2c [®] o
& cyclic2.c E]delay?.c [®]initc [®]msgo.c [®] i
& cyclicic E]delaydc [®]initech.c [®msgg2.c [®] e
& cyclicd.c B destroy.c [®]initask c [®msgg3c EE
< | i
File name: |mem.c
Files of type: IC:’C++ Source Files (*c*cpp*co) j
Add to Group:
ISaIVU Sources j
Files in Graup:
Cihsalvo\srcimem.c Add

Acld All
Bemaove
Femove All
Done | Cancel |

Figure 10: Project Files Window

When finished, select Done, and your project window should look
likethis:

17 ex]liteprj
Targets: IDehug j ﬂl

E-a Debug
/23 Listings
{23 Salva Configuration File
/{23 Salvo Help Files
Ea Sabso Libraries
[sfiard3t-ardd
Ea Sakwo Sources
@[memc
=23 Sources
&-[@ mainc

Figure 11: Project Window with Library, mem.c and User
Source File(s)

The salvocfg.h Header File

You will also need a sal vocf g. h file for this project. To use the
library selected in Figure 9, your sal vocf g. h should contain only:

#def i ne OSUSE_LI BRARY TRUE
#def i ne OSLI BRARY_TYPE OSF
#def i ne OSLI BRARY_CONFI G OSA

Listing 1: salvocfg.h for a Library Build

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

Select Project — Files, All Files (*.*) under Files of type, Salvo
Configuration File under Add to Group, navigate to your
project's directory, select sal vocf g. h and Add:

Project Files 2] x]

Loak jn: |@temp | @I ﬁl

HE main.c

H sahvocto b
ryex] dip
myex] pr

File name: Isalvoc‘fg.h

Files aftype: |4l Files (9 =l
Add to Group:
ISa\VD Canfiguration File j

Files in Group:

Cihternphsabaocfgh Add

Acdd All

Bemove

Eemove All

Done | Cancel |

Figure 12: Adding the Configuration File to the Project

Y our project window should now look like this:

71 ex] lite.prj

Targets: IDebug j ﬂl

=23 Debug

a Listings
Ea Sahswo Configuration File
. B salvocioh
a Sahso Help Files
Ea Sabvo Likraries
[sfior430-ar43
Ea Saho Sources
- @[memc
=23 Sourcas

B[mainc

Figure 13: Project Window for a Library Build

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for editing, etc.

Proceed to Building the Project, below.

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE 9

PUMPKIN

Application Note

Adding Salvo Source Files

If you have a Salvo distribution that contains source files, you can
do a source code build instead of alibrary build. The application in
\'sal vo\ ex\ ex1\ mai n. ¢ contains calls to the following Salvo user
services:

OS_Del ay() Csl ni t ()

OS Wi t Bi nSem() GSSi gnal Bi nSem()
OSCr eat eBi nSem() OSSched()

OSCr eat eTask() OSTi ner ()

CSEi ()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the completelistis:

bi nsem ¢ mem c

del ay. c portiar430.s43
event.c gins.c

idle.c sched. c

init.c timer.c
inittask.c

To add these files to your project, select Project — Files, All
Files (*.*) under Files of type, Salvo Sources under Add to
Group:, navigate to the \'sal vo\src directory, select® the files
listed above and Add:

Project Files
Loakin: | i sre [ci

Mo array.c destroyc inittaskc msng.c
I binserm.c Pefage Pinittch.c Prmsggic [e
B binsem?2.c Petagec Pintilc B ponsost o | BEL
Y chik.c Peidc Plicensec Pponciac s
debug = event.c mem.c punvﬁ.c sl
delay.c \dle.c msg.c priu.c ta
delayE.c \nit.c mng.c qdel.c ta
H delaydc Pinitech.c Pimsgo.c Prgins.c Pta
4] | 3|
File name: |

Files of type: |40l Filas (42 =l

Add to Group:

ISa\vo Sources j

Files in Group:

Dihsakaosrohhinsem o - Add
Dihsakaolsrchdelay.c _—

Dhsaksaolsrcheventc Add All
D:hsaksolsrchinitc
D:hsaksolsrchinittask.c
D:hsakaolsrcymem.c [
Dnhsahkaolerchportiard30.243 =l Femaove All

Eemove

Dione Cancel |

10 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

Figure 14: Adding Salvo Source Files to the Project

Select Done when finished. Y our project window should now ook
likethis:

1 myex1.prj =(0] x|
Targets: IDebug j ﬂl

=23 Debug

-1 Listings

=23 Salva Configuration File
"B salvocfgh

{21 Salvo Help Files

423 Salvo Libraries

=23 Sakvo Sources

#-@ binsem.c

&-[@ delay.c

B[eventc

- initc

[

[

f-F inittask.c
ZI--ET mem.c
[portiardin.s43
#-[@ gins.c
#-[@ schedro
w-[@ timerc
=3 Sources

B rmainc

Figure 15: Project Window for a Source Code Build

The salvocfg.h Header File

You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the sal vocf g. h for this project contains only:

#def i ne OSBYTES OF_ DELAYS 1
#def i ne OSENABLE | DLI NG_HOOK TRUE
#def i ne OSENABLE_BI NARY _SEMAPHORES TRUE
#def i ne OSEVENTS 1
#def i ne OSTASKS 3

Listing 2: salvocfg.h for a Source Code Build

Building the Project

For a successful compile, your project must also include a header
file (e.g. #i ncl ude <msp430x14x. h>) for the particular chip you
are using. Normally, this is included in each of your source files
(e.g. main.c), or in a header file that's included in each of your
source files (e.g. mai n. h).

With everything in place, you can now build the project using
Project — Make or Project — Build All. The build results can
be seen in the map file located in the project's Debug\ Li st
subdirectory:®

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE 11

PUMPKIN

REAL-TIME SOFTWARE

Application

Note

Qutput file 1

Command |ine

HHFHBEHEHFFF RS SREEEEER

I AR Uni versal Linker V4.53G WN

Link tine = 17/ Apr/ 2002 10:33:44
Target CPU = MBP430
List file = C:\tenp\Debug\List\nyexl. map

C:\ t enp\ Debug\ Exe\ nyex1. d43

Format : debug

UBRCF version 6.0.0

Using library nodules for CSPY (-rt)
C:\ t enp\ Debug\ Obj \ bi nsem r 43

C:\t enp\ Debug\ Obj \ del ay. r43

C:\ t enp\ Debug\ Obj \ event . r43

C:\tenp\ Debug\ Cbj \init.r43

C:\t enp\ Debug\ Obj \i ni ttask. r43
C:\ t enp\ Debug\ Obj \ mem r 43

C:\ t enp\ Debug\ Obj \ porti ar430.r43

C:\'t enp\ Debug\ Obj \ gi ns. r43

C:\ t enp\ Debug\ Obj \ sched. r43

C:\ t enp\ Debug\ Obj \ tinmer.r43

C:\tenp\ Debug\ Gbj\nain.r43 -o
C:\tenp\ Debug\ Exe\ nyex1.d43 -rt -1

C:\ t enp\ Debug\ Li st\ nyexl. map - xms

-1 C\I AR EW23\ 430\ LI B\ -f

C:\'I AR\ EW23\ 430\ i cc430\ msp430F123C. xcl

(-cMBP430 - Z(DATA) UDATAO, | DATAO, ECSTR=0200- 02FF
- Z(DATA) CSTACK#0200- 0300 - Z(CODE) | NFO=1000- 10FF
- Z(CODE) CODE, CONST, CSTR, CDATAO, CCSTR=E000- FFDF

- Z(CODE) | NTVEC=FFEO- FFFF
-e_small _wite=_fornatted_wite
-e_nedi umread=_fornatted_read cl 430.r43)

Copyright 1987-2001 | AR Systens. All rights reserved.

HHFHBHEHFFFHEHFR SRR

[SNI P]
* SEGVENTS | N ADDRESS ORDER *
SEGVENT SPACE START ADDRESS END ADDRESS SIZE TYPE ALIGN
UDATAO 0200 - 022B 2C rel 1
ECSTR 022C rel 1
| DATAO 022C rel 1
CSTACK 0300 rel 1
| NFO 1000 dse 0
CCDE E000 - E551 552 rel 1
CSTR E552 dse 0
CDATAO E552 rel 1
CCSTR E552 rel 1
CONST E552 dse 0
| NTVEC FFEO - FFFF 20 com 1
R KAk AR K KKK R KRRk R K KKk
* END OF CROSS REFERENCE *
* *
1 394 bytes of CODE nenory
44 bytes of DATA nmenory

Errors: none
War ni ngs: none

Listing 3: Source Code Build Results (Abbreviated)

Note The Embedded Workbench for MSP430 projects supplied
in the Salvo for TI's MSP430 distributions contain additional help
filesin each project's Salvo Help Files group.

Tip If you configure Embedded Workbench to display the
memory utilization for individual source files and the complete
application you won't have to look in the map file. Select Options
— Settings — Make Control — Message Filtering Level and

choose All.

12

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

Testing the Application

Y ou can test and debug this application using the C-SPY debugger
and either the smulator or the Flash Emulation Tool. To launch C-
SPY, choose Project — Debugger.

You can use al of C-SPY's supported features when debugging
and testing Salvo applications. This includes breakpoints, profiling,
intelligent watch window, cycle counting, etc.

4 CSPY - myex1.d43 [_[Ofx]
Fil= Edit Yiew Execute Control Achvanced Options Window Help
ElrzzezzzZla v e moea==0e|
W Watch J[=l E3
Expression Walue A
e |
I Source (O] =]
main.c =l osidingHook =
{ [|
for (1) { m Status =]E3
05_Delay(40, Taskiaj; absolute relative
PORT *= Ox08; Cycles: 503125 503125 Reset J
055ignalBinSem (BINSEML Py ;
) - Instructions: 147258 147256 Resst
} !
/% Noi used. Hook must be defined because libraries Wi A
K| A
¥l Profiling (O] %]
|& o= | @ |/503is |
Function | Count | Flat Time (cvcles) | Flat Time (22) |Accumu\ated Tim... |ﬂ
inittask\ OSInitFrioTask 1 149 149
ginstOSInsPrioQ 13 1525 1525
schedy033ched 10278 330530 [] 332532 I_I
tirmer,O5Timer 49 480 440
maint Taskl 4 13N 771 x
<r 4P
Fieady |Ln 71. Cal (041702 [NEVEROENN -

Figure 16: Testing a Salvo Application in C-SPY

Note C-SPY supports debugging at the source code level. Only
applications built from the Salvo source code or a Salvo Pro library
enable you to step through Savo services (eg.
OSCr eat eBi nSeny()) at the source code level. Regardless of how
you build your Salvo application, you can aways step through
your own C and assembly codein C-SPY.

Migrating to Embedded Workbench for MSP430 v2

Existing Salvo applications built as projects (*. pj t) under IAR's
Embedded Workbench for MSP430 v1 can be migrated to v2 using
the following steps.

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE 13

SUINY Application Note

* In Embedded Workbench for MSP430 v2, choose
File — New — Workspace to create a new
workspacefile (*. eww).

» Choose File — Insert Project into the
Workspace..., select Files of type: Old Project
Files (*.prj), navigate to the old project and select
Open, then OK.

* Under Project — Options, select the device (e.g.

M SP430F149) under Genera — Target — Device.
Set the desired optimizations under ICC430 — Code
— Optimizations. Under XLINK — Include, ensure
that the XCL file nameis not overridden and/or a
valid filename is used.

* Remove the existing Salvo library from the project,
and replace it with a same-named one from
\'sal vo\lib\iar430-v2.

When finished, the new project window will look like this:

% myex] = - myex] = o] 3
e v il
IDebug VI
Files I=E
Emyexl — Debuyg * "
=2 L Listings

L B miyexl.map
2 21 Salvo Configuration File
L @ sahocigh
2 CA Sakvo Help Files
L @ abstracttd
2 CA Sakvo Libraries
L— B sfiard30-ar43
2 CA Sakvo Sources
@ merm.c
= (1 Sources
@ rain.c

rryex] I

Figure 17: Project Window for a Library Build in
Embedded Workbench for MSP430 v2

Troubleshooting

Linker Error: Undefined External (version number)

If you are doing a library build and your version of the IAR
MSP430 C Compiler is different from that used to build the Salvo
libraries, the linker will issue an error like this one:’

14 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

SUINY Application Note

A Messages 1= E3
Buildl | Fird in Filesl Tool Outputl 'Wl
Making target Debug...

Linking...

Error[ed6]: Undefined external "?CL430_1_25_L0&" reterred in event { DX\ sakaohlibhsliard3l-e.r43)

Total number of errars: 1
Total number of warnings: 0

Figure 18: Linker Error due to Version Mismatch

This type of error occurs because the Salvo library — in this case,
sliar430-e.r43 — references an external symbol (here,
?CL430_1_25_L08) which is not defined by the version of the
compiler you are using. The library references this symbol because
it was built with a different version of the IAR MSP430 C
compiler. The solution is simply to define this symbol at link time
by using Project — Options — XLINK — #define and then
assigning avalue of 1 to the symbol:

Options For Target "Debug" K3
Categary: Factory Settings |
General Output #define |Diagnost\cs| List | Include' Lt | Processing'

ICC430
A430

Defined symbals: {one per line)

C-EPY TCL430_1_26_L08=1 =

Ok | Cancel |

Figure 19: Setting the Link-time Version Number
External Symbol

Once this symbol is defined, you'll be able to build your
application successfully.

Note This solution should work as long as the major version
number of the IAR MSP430 C Compiler you're using matches that
used to generate the Salvo libraries. E.g. v1.23A can be used with
Salvo libraries built with v1.26A.°

Version mismatches like this will occur whenever Salvo users and
the Salvo for TI's MSP430 distribution are at different versions of
the IAR MSP430 C compiler. While this solution is unlikely to

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE 15

PUMPKIN

Application Note

cause any problems, we strongly recommend that Salvo users keep
their IAR MSP430 C compiler up-to-date to avoid any potential
difficulties.

This type of linker error will not happen with source code builds,
e.g. when using Salvo Pro to build an application using the Salvo
source files as project nodes instead of linking to a Salvo library.

Application Crashes After Changing Processor Type

Example Projects

Remember to #i ncl ude the appropriate header file for your
MSP430 variant (see Building the Project, above). While the
common SFR locations are consistent across the entire MSP430
family, the interrupt vectors are not. Therefore mainline code may
work correctly, but the application will crash if interrupt vectors
are not in the right locations.

Example projects for IAR's MSP430 C compiler can be found in
the \sal vo\tut\tul-6\sysq directories. The include path for
each of these projects includes \ sal vo\t ut\tul\sysq, and each
project defines the SYsQ symbol.

Complete projects using Salvo freeware libraries are contained in
the project files \'sal vo\tut\tul-6\sysg\tul-6lite.*. These
projects also define the MAKE_W TH_FREE_LI B symbol.

Complete projects using Salvo standard libraries are contained in
the project files \salvo\tut\tul-6\sysq\tul-6le.*. These
projects also define the MAKE_W TH_STD LI B symbol.

Complete projects using Salvo source code are contained in the
project files \salvo\tut\tul-6\sysq\tul-6pro.*. These
projects also define the MAKE_W TH_SOURCE symbol.

Note Tutoria projects are provided for IAR Embedded
Workbench for MSP430 v1 (*.prj filesy IAR Embedded
Workbench for MSP430 v2 (*. ewp & *. eww files).

! This Salvo project supports a wide variety of targets and compilers. For use

with AR's MSP430 compiler, it requires the SYSQ defined symbol, as well as

16 AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE

PUMPKIN

Application Note

the symbols MAKE_W TH FREE_LI B or MAKE_W TH_STD LI B for library
builds. When you write your own projects, you may not require any symbols.

. xcl filenames ending in 'C appear to be for C-language projects. Those
ending in ‘A’ appear to be for assembly-language projects.

We recommend using the Embedded Workbench's argument variables like
$PROJ DIR$ and $TOOLKIT_DIR$ whenever possible.

This Salvo Lite library contains al of Savo's basic functionality. The
corresponding Salvo LE and Pro libraries are diar430-ar43 and
dliar430ia.r43, respectively.

Y ou can Ctrl-select multiple files at once.

We recommend that you add the project's map file to your project's Listings
group.

This example was generated using the IAR MSP430 C Compiler v1.26A, with
Salvo LE for TI's MSP430 v3.0.3, which was built using v1.25A. Hence the
_1_25_(for v1.25) in the undefined externa symbal.

In this example, the major version number is 1.

AN-15 Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE 17

	Building a Salvo Application with IAR's MSP430 C Compiler and Embedded Workbench IDE
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	Adding Salvo-specific Files to the Project
	Adding a Library
	Adding Salvo's mem.c
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Migrating to Embedded Workbench for MSP430 v2
	Troubleshooting
	Linker Error: Undefined External (version number)
	Application Crashes After Changing Processor Type

	Example Projects

