

AN-14
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Aug 7, 2002 updated on Jul 23, 2003
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
IAR's PIC18 C Compiler and
Embedded Workbench IDE

Introduction
This Application Note explains how to use IAR's
(http://www.iar.com/) PIC18 C compiler and Embedded
Workbench IDE to create a multitasking Salvo application for
Microchip's (http://www.microchip.com/) PIC18 PICmicro®
microcontrollers.

We will show you how to build the Salvo application contained in
\salvo\ex\ex1\main.c for a PIC18C452 using IAR Workbench
for PIC18 v2.10A/WIN. For more information on how to write a
Salvo application, please see the Salvo User Manual.

Before You Begin
If you have not already done so, install the IAR Embedded
Workbench for the PIC18.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with IAR's
PIC18 C compiler:

Salvo User Manual
Salvo Compiler Reference Manual RM-IAR18

Creating and Configuring a New Project
Create a new Embedded Workbench project under File → New →
Project → OK. Select PIC18 as the Target CPU Family,

http://www.iar.com/
http://www.microchip.com/

 Application Note

2 AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

navigate to your working directory (in this case we've chosen
c:\temp) and create a project named myex1.pew:

Figure 1: Creating the New Project

Click Create to continue. Choose File → Save to save the
project.

In order to manage your project effectively, we recommend that
you create a set of groups for your project. They are:

Listings
Salvo Configuration File
Salvo Help Files
Salvo Libraries
Salvo Sources
Sources

For each group, choose Project → New Group, add in the Group
Name and select OK.

Figure 2: Creating a Group

When finished, your project window should look like this:

 Application Note

AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

3

Figure 3: Project Window with Groups

Now we'll select the project's options for your particular PIC18
microcontroller. Select Project → Options → General →
Target and select Code model → Stack1 and the appropriate
Processor variant:

Figure 4: Setting the Code Model and Processor Variant

Next, select Project → Options → ICCPIC18 →
Preprocessor and add the include paths $PROJ_DIR$\ and
c:\salvo\inc\ under Include paths.2 Also, define any symbols
you may need for your project under Defined symbols:3, 4

 Application Note

4 AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

Figure 5: ICCPIC18 Settings – Project Include Paths

Next, select Project → Options → XLINK → List → Generate
Linker listing. This will create a useful .map file with the
application's ROM and RAM requirements, etc. Under Project →
Options → XLINK → Include, you can use the default XCL file
name.

Figure 6: XLINK Settings – Project XCL File Name

Lastly, under Project → Options → C-SPY → C-SPY
Settings, select the Driver (ICE2000 Emulator or Simulator)
and select Device description file → Use device description

 Application Note

AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

5

description file and select the appropriate description file for your
PIC18:

Figure 7: C-SPY Settings – Project Chip Description File

Select OK to finish configuring your project.

Adding your Source File(s) to the Project
Now it's time to add files to your project. Choose Project → Files,
C/C++ Source Files (*.c,*.cpp,*.cc) under Files of type,
Sources under Add to Group, navigate to your project's
directory, select your main.c and Add. Your Project Files
window should look like this:

 Application Note

6 AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

Figure 8: Project Files Window

When finished, select Done, and your project window should look
like this:

Figure 9: Project Window with Project-Specific Source

Files

Adding Salvo-specific Files to the Project
Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries,
or with the Salvo source code files as nodes in your project.

Adding a Library
For a library build, a fully-featured Salvo freeware library for the
PIC18 is sfiar18-slna.r49.5 Select Project → Files,
Library/Object Files (*.r*) under Files of type, Salvo Libraries

 Application Note

AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

7

under Add to Group, navigate to the \salvo\lib\iar18
directory, select sfiar18-slna.r49 and Add:

Figure 10: Adding the Library to the Project

Select Done when you are finished. You can find more
information on Salvo libraries in the Salvo User Manual and in the
Salvo Compiler Reference Manual RM-IAR18.

Adding Salvo's mem.c
Salvo library builds also require Salvo's mem.c source file as part
of each project. Choose Project → Files, C/C++ Source Files
(*.c,*.cpp,*.cc) under Files of type, select Salvo Sources under
Add to Group, navigate to \salvo\src, select mem.c and Add.
Your Project Files window should look like this:

 Application Note

8 AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

Figure 11: Project Files Window

When finished, select Done.

The salvocfg.h Header File
You will also need a salvocfg.h file for this project. To use the
library selected in Figure 10, your salvocfg.h should contain
only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_GLOBALS OSN
#define OSLIBRARY_CONFIG OSA

Listing 1: salvocfg.h for a Library Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h.

Select Project → Files, All Files (*.*) under Files of type, Salvo
Configuration File under Add to Group, navigate to your
project's directory, select salvocfg.h and Add:

 Application Note

AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

9

Figure 12: Adding the Configuration File to the Project

Your project window should now look like this:

Figure 13: Project Window for a Library Build

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for editing, etc.

Proceed to Building the Project, below.

Adding Salvo Source Files

If you have a Salvo distribution that contains source files, you can
do a source code build instead of a library build. The application in

 Application Note

10 AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

\salvo\ex\ex1\main.c contains calls to the following Salvo user
services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c mem.c
delay.c portpic18.c
event.c qins.c
idle.c sched.c
init.c timer.c
inittask.c

To add these files to your project, select Project → Files, All
Files (*.*) under Files of type, Salvo Sources under Add to
Group:, navigate to the \salvo\src directory, select6 the files
listed above and Add:

Figure 14: Adding Salvo Source Files to the Project

Select Done when finished. Your project window should now look
like this:

 Application Note

AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

11

Figure 15: Project Window for a Source Code Build

The salvocfg.h Header File
You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the salvocfg.h for this project contains only:

#define OSBYTES_OF_DELAYS 1
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3

Listing 2: salvocfg.h for a Source Code Build

Create this file and save it in your project directory, e.g.
c:\temp\salvocfg.h.

Select Project > Files, All Files (*.*) under Files of type, Salvo
Configuration File under Add to Group, navigate to your
project's directory, select salvocfg.h and Add:

 Application Note

12 AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

Figure 16: Adding the Configuration File to the Project

Your project window should now look like this:

Figure 17: Edit Project Window for a Library Build

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for editing, etc.

Building the Project
For a successful compile, your project must also include a header
file (e.g. #include <io18c452.h>) for the particular chip you are

 Application Note

AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

13

using. Normally, this is included in each of your source files (e.g.
main.c), or in a header file that's included in each of your source
files (e.g. main.h).

With everything in place, you can now build the project using
Project → Make or Project → Build All. The build results can
be seen in the map file located in the project's Debug\List
subdirectory:7

IAR Universal Linker V4.53I/386 #

Link time = 07/Aug/2002 21:47:38 #
Target CPU = PIC18 #
List file = C:\temp\Debug\List\myex1.map #
Output file 1 = C:\temp\Debug\Exe\myex1.d49 #
Format: debug #
UBROF version 9.1.0 #
Using library modules for C-SPY (-rt) #
Command line = C:\temp\Debug\Obj\binsem.r49 #
C:\temp\Debug\Obj\delay.r49 #
C:\temp\Debug\Obj\event.r49 #
C:\temp\Debug\Obj\idle.r49 #
C:\temp\Debug\Obj\init.r49 #
C:\temp\Debug\Obj\inittask.r49 #
C:\temp\Debug\Obj\mem.r49 #
C:\temp\Debug\Obj\portpic18.r49 #
C:\temp\Debug\Obj\qins.r49 #
C:\temp\Debug\Obj\sched.r49 #
C:\temp\Debug\Obj\timer.r49 #
C:\temp\Debug\Obj\main.r49 #
-e_medium_read=_formatted_read #
-e_Scanf_1=_Scanf #
-e_small_write=_formatted_write #
-e_Printf_1=_Printf -o #
C:\temp\Debug\Exe\myex1.d49 -rt -l #
C:\temp\Debug\List\myex1.map -xms #
-IC:\IAR\EW33\PIC18\LIB\ -f #
C:\IAR\EW33\PIC18\Config\l18cs.xcl (-cpic18 #
-D_..X_STACK_SIZE=130 -Z(CODE)INTVEC=0000-00100 #
-Z(CODE)ICODE,RCODE,BANK_ID,BANK_ID_END,BANK_ZD,B #
ANK_ZD_END=4-1FFFFF #
-P(CODE)CODE=4-1FFFFF #
-P(CODE)BANKN_ID,BANK0_ID,BANK1_ID,BANK2_ID,BANK3 #
_ID,BANK4_ID,BANK5_ID,BANK6_ID,BANK7_ID,BANK8_ID, #
BANK9_ID,BANK10_ID,BANK11_ID,BANK12_ID,BANK13_ID, #
BANK14_ID,BANK15_ID,CONST=4-1FFFFF #
-Z(CODE)CSTACK=1000000-100001F #
-Z(CODE)CHECKSUM=1000100-100010F #
-Z(XDATA)EEPROM_I,EEPROM_Z,EEPROM_N=[0-_..X_EEPRO #
M_END]/0100 #
-P(CODE)EXTMEM_I,EXTMEM_Z,EXTMEM_N=_..X_EXTMEM_ST #
ART-_..X_EXTMEM_END #
-Z(DATA)WRKSEG,BANKN_I,BANKN_Z,BANKN_N=0-07F #
-Z(DATA)OVERLAY0,BANK0_I,BANK0_Z,BANK0_N=0-0FF #
-Z(DATA)OVERLAY1,BANK1_I,BANK1_Z,BANK1_N=100-1FF #
-Z(DATA)OVERLAY2,BANK2_I,BANK2_Z,BANK2_N=200-2FF #
-Z(DATA)OVERLAY3,BANK3_I,BANK3_Z,BANK3_N=300-3FF #
-Z(DATA)OVERLAY4,BANK4_I,BANK4_Z,BANK4_N=400-4FF #
-Z(DATA)OVERLAY5,BANK5_I,BANK5_Z,BANK5_N=500-5FF #
-Z(DATA)OVERLAY6,BANK6_I,BANK6_Z,BANK6_N=600-6FF #
-Z(DATA)OVERLAY7,BANK7_I,BANK7_Z,BANK7_N=700-7FF #
-Z(DATA)OVERLAY8,BANK8_I,BANK8_Z,BANK8_N=800-8FF #
-Z(DATA)OVERLAY9,BANK9_I,BANK9_Z,BANK9_N=900-9FF #
-Z(DATA)OVERLAY10,BANK10_I,BANK10_Z,BANK10_N=0A00 #
-0AFF #
-Z(DATA)OVERLAY11,BANK11_I,BANK11_Z,BANK11_N=0B00 #
-0BFF #
-Z(DATA)OVERLAY12,BANK12_I,BANK12_Z,BANK12_N=0C00 #
-0CFF #
-Z(DATA)OVERLAY13,BANK13_I,BANK13_Z,BANK13_N=0D00 #
-0DFF #
-Z(DATA)OVERLAY14,BANK14_I,BANK14_Z,BANK14_N=0E00 #
-0EFF #
-Z(DATA)OVERLAY15,BANK15_I,BANK15_Z,BANK15_N=0F00 #
-0F7F #
-Z(DATA)STACK+_..X_STACK_SIZE=0-0F7F #
-P(DATA)OVERLAY,BANK_I,BANK_Z,BANK_N=[0-0F7F]/010 #
0 #
clib/cl18s.r49 -Ointel-extended=.hex) #
-D_..X_EEPROM_END=0 -D_..X_EXTMEM_START=0 #
-D_..X_EXTMEM_END=0 #

Copyright 1987-2002 IAR Systems. All rights reserved. #

 Application Note

14 AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

[SNIP]

 **
 * *
 * SEGMENTS IN ADDRESS ORDER *
 * *
 **

SEGMENT SPACE START ADDRESS END ADDRESS SIZE TYPE ALIGN
======= ===== ============= =========== ==== ==== =====
INTVEC CODE 00000000 - 0000000B C com 1
__aseg (ABS) CODE 00000000 rel 0
 CODE 00000000

[SNIP]

 CODE 00000000
ICODE CODE 0000000C - 00000099 8E rel 1
RCODE CODE 0000009A - 00000171 D8 rel 1
BANK_ID CODE 00000172 - 00000175 4 rel 0
BANK_ID_END CODE 00000176 - 00000178 3 rel 0
BANK_ZD CODE 00000179 - 00000190 18 rel 0
BANK_ZD_END CODE 00000191 - 00000193 3 rel 0
<CODE> 1 CODE 00000194 - 000011E5 1052 rel 1
WRKSEG DATA 00000000 - 0000000C D rel 0
BANKN_I DATA 0000000D dse 0
BANKN_Z DATA 0000000D - 0000000E 2 rel 0
STACK DATA 0000000F - 0000013E 130 dse 0
<BANK_Z,BANK_I> 1 DATA 0000013F - 00000172 34 rel 0
BANKN_A (ABS) DATA 00000F80 - 00000F80 1 rel 0
 DATA 00000F81 - 00000F81 1

[SNIP]

 DATA 00000FFF - 00000FFF 1

 **
 * *
 * END OF CROSS REFERENCE *
 * *
 **

 4 582 bytes of CODE memory
 371 bytes of DATA memory
 97 bytes of NEARDATA memory

Errors: none
Warnings: none

Listing 3: Source Code Build Results (Abbreviated)

Note The Embedded Workbench for PIC18 projects supplied in
the Salvo for PICmicro® MCUs distributions contain additional
help files in each project's Salvo Help Files group.

Testing the Application
You can test and debug this application using the C-SPY debugger
and either the simulator or the Flash Emulation Tool. To launch C-
SPY, choose Project → Debugger.

You can use all of C-SPY's supported features when debugging
and testing Salvo applications. This includes breakpoints, profiling,
intelligent watch window, code coverage, etc.

 Application Note

AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

15

Figure 18: Testing a Salvo Application in C-SPY

Note C-SPY supports debugging at the source code level. Only
applications built from the Salvo source code or a Salvo Pro library
enable you to step through Salvo services (e.g.
OSCreateBinSem()) at the source code level. Regardless of how
you build your Salvo application, you can always step through
your own C and assembly code in C-SPY.

Troubleshooting

PIC18 C-compiler Error: Cannot open include file(s)
If you fail to add \salvo\inc to the project's include paths (see
Figure 5) the compiler will generate an error like this one:

Fatal Error[Pe005]: could not open source file
"salvo.h"

Figure 19: Compiler Error due to Missing \salvo\inc
Include Path

By adding \salvo\inc to the project's include path, you enable
the compiler to find the main Salvo header file salvo.h, as well as
other included Salvo header files.

 Application Note

16 AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

If you fail to add the project's own directory to the project's
include paths (see Figure 5) the compiler will generate an error like
this one:

Fatal Error[Pe005]: could not open source file
"salvocfg.h"

Figure 20: Compiler Error due to Missing Project Include
Path

By adding the project's own directory to the project's include path,
you enable the compiler to find the project-specific header file
salvocfg.h.

Example Projects
Example projects for IAR's PIC18 C compiler are found in the
\salvo\tut\tu1-6\sysp directories. The include path for each of
these projects includes salvo\tut\tu1\sysp, and each project
defines the SYSP symbol.

Complete projects using Salvo freeware libraries are contained in
the project files \salvo\tut\tu1-6\sysp\tu1-6lite.pew. These
projects also define the MAKE_WITH_FREE_LIB symbol.

Complete projects using Salvo standard libraries are contained in
the project files \salvo\tut\tu1-6\sysp\tu1-6le.pew. These
projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo standard libraries with debugging
information are contained in the project files \salvo\tut\tu1-
6\sysp\tu1-6prolib.pew. These projects also define the
MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo source code are contained in the
project files \salvo\tut\tu1-6\sysp\tu1-6pro.pew. These
projects also define the MAKE_WITH_SOURCE symbol.

1 Currently Salvo only supports the stack code model. Choosing the Static

overlay model will result in a non-working Salvo application.
2 Relative pathnames are also supported.
3 This Salvo project supports a wide variety of targets and compilers. For use

with IAR's PIC18 compiler, it requires the SYSP defined symbol, as well as
the symbols MAKE_WITH_FREE_LIB or MAKE_WITH_STD_LIB for library
builds. When you write your own projects, you may not require any symbols.

4 We recommend using the Embedded Workbench's argument variables like
$PROJ_DIR$ and $TOOLKIT_DIR$ whenever possible.

 Application Note

AN-14 Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE

17

5 This Salvo Lite library contains all of Salvo's basic functionality. The

corresponding Salvo LE and Pro libraries are sliar18-slna.r49 and
sliar18islna.r49, respectively.

6 You can Ctrl-select multiple files at once.
7 We recommend that you add the project's map file to your project's Listings

group.

	Building a Salvo Application with IAR's PIC18 C Compiler and Embedded Workbench IDE
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	Adding Salvo-specific Files to the Project
	Adding a Library
	Adding Salvo's mem.c
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Troubleshooting
	PIC18 C-compiler Error: Cannot open include file(s)

	Example Projects

