
 

AN-13 
Application Note 

750 Naples Street    •    San Francisco, CA 94112    •   (415) 584-6360    •    http://www.pumpkininc.com 

 

created by Andrew E. Kalman on Jul 27, 2002    updated on Jul 23, 2003 
All trademarks mentioned herein are properties of their respective companies. 

 

Building a Salvo Application with 
Keil's Cx51 C Compiler and 
µVision2 IDE 

Introduction 
This Application Note explains how to use Keil's 
(http://www.keil.com/) Cx51 compiler and µVision2 IDE to create 
a multitasking Salvo application for the 8051 family of 
microcontrollers. 
 
We will show you how to build the Salvo application contained in 
\salvo\ex\ex1\main.c for a generic 8051 microcontroller using 
the Keil tools. For more information on how to write a Salvo 
application, please see the Salvo User Manual. 

Before You Begin 
If you have not already done so, install the Cx51 and µVision2 
tools. With the µVision2 IDE you will be able to run and debug 
this application in the simulator or on real hardware (if available). 

Related Documents 
The following Salvo documents should be used in conjunction 
with this manual when building Salvo applications with Keil's 
Cx51 compiler and µVision2 IDE: 
 

Salvo User Manual 
Salvo Compiler Reference Manual RM-KC51 

Creating and Configuring a New Project 
Create a new µVision2 project using Project → New Project. In 
the Create New Project window, navigate to your working 

http://www.keil.com/


 Application Note 
 

2 AN-13  Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE 
 

 

directory (in this case we've chosen c:\temp) and enter a name for 
the project (we'll use myex1) in the File Name field: 

 
Figure 1: Creating the New Project 

Click on Save to continue. The Select Devices for Target 
'Target 1' window appears. Under the CPU tab select and expand 
Generic: 

 
Figure 2: µVision2 Device Selection Window with 

Generic 8051 Selected 

Select 8051 (all Variants) and click on OK to continue.  
 
Now let's setup the project's options for Salvo's pathnames, etc. 
Choose Project → Options for Target 'Target 1' → Cx51 and 
define any symbols you may need for your project in the 
Preprocessor Symbols → Define area.1 In the Include Paths, 
add \salvo\inc: 



 Application Note 
 

AN-13  Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE 
 

3 
 

 
Figure 3: Cx51 Options for Target 

Click on OK to finish configuring your project. 

Adding your Source File(s) to the Project 
Now it's time to add files to your project. Choose Project → 
Targets, Groups, Files → Groups / Add Files, select Source 
Group 1 under Available Groups, click on Add Files to 
Group�, navigate to your project's directory, select your main.c 
and click on Add. Your project window should now look like this: 

 
Figure 4: µVision2 Project Window with your Source 

File(s) 

Click on Close after you are adding source files to your project.  

Creating Groups for Salvo Files 
For legibility and organizational purposes, we recommend you add 
additional groups to your project to hold Salvo files. They are: 
 

Salvo Configuration File 
Salvo Libraries 
Salvo Sources 



 Application Note 
 

4 AN-13  Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE 
 

 

 
Add these groups now using Project → Targets, Groups, Files 
→ Groups / Add Files → Group to Add. When done, your 
project window should look like this: 

 
Figure 5: µVision2 Project Window with your Source 

File(s) and Salvo Groups 

Adding Salvo-specific Files to the Project 
Now it's time to add the Salvo files your project needs. Salvo 
applications can be built by linking to precompiled Salvo libraries, 
or with the Salvo source code files as nodes in your project. 

Adding a Library 
For a library build, a fully-featured Salvo freeware library for the 
Cx51 compiler is sfc51sdab.lib.2 Choose Project → Targets, 
Groups, Files → Groups / Add Files, select Salvo Libraries 
under Available Groups, click on Add Files to Group�, choose 
Library file (*.lib) under Files of type, navigate to the 
\salvo\lib\kc51 directory, and select sfc51sdab.lib: 

 
Figure 6: Adding the Library to the Project 

Click on Add, then on Close when you are finished. You can find 
more information on Salvo libraries in the Salvo User Manual and 
in the Salvo Compiler Reference Manual RM-KC51. 



 Application Note 
 

AN-13  Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE 
 

5 
 

Adding Salvo's mem.c 
Salvo library builds also require Salvo's mem.c source file as part 
of each project. Choose Project → Targets, Groups, Files → 
Groups / Add Files, select Salvo Sources under Available 
Groups, click on Add Files to Group�, navigate to \salvo\src, 
select mem.c and click on Add: 

 

The salvocfg.h Header File 
 
You will also need a salvocfg.h file for this project. To use the 
library selected in Figure 6, your salvocfg.h should contain only: 
 

#define OSUSE_LIBRARY   TRUE 
#define OSLIBRARY_TYPE        OSF 
#define OSLIBRARY_GLOBALS     OSD 
#define OSLIBRARY_CONFIG  OSA 
#define OSLIBRARY_VARIANT     OSB 

Listing 1: salvocfg.h for a Library Build 

Create this file and save it in your project directory, e.g. 
c:\temp\salvocfg.h. We also recommend adding it to the 
project's Salvo Configuration File group using Project → 
Targets, Groups, Files → Groups / Add Files, etc. 
 
Note To add a header file (*.h) to a Group, in the Get Filetype 
window you must specify that the file is of type Text Document 
file for it to be accepted.  
 
Your project window should now look like this: 



 Application Note 
 

6 AN-13  Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE 
 

 

 
Figure 7: Vision Project Window for Library Build 

Proceed to  
Your project window should now look like this: 

 
Figure 9: Project Window for a Source Code Build 

Building the Project, below. 

Adding Salvo Source Files 
 
If you have a Salvo distribution that contains source files, you can 
do a source code build instead of a library build. The application in 
\salvo\ex\ex1\main.c contains calls to the following Salvo user 
services: 
 

OS_Delay()  OSInit() 
OS_WaitBinSem() OSSignalBinSem() 
OSCreateBinSem() OSSched() 
OSCreateTask()  OSTimer() 
OSEi()    

 
You must add the Salvo source files that contain these user 
services, as well as those that contain internal Salvo services, to 
your project. The Reference chapter of the Salvo User Manual lists 
the source file for each user service. Internal services are in other 
Salvo source files. For this project, the complete list is: 



 Application Note 
 

AN-13  Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE 
 

7 
 

 
binsem.c      mem.c 
delay.c      port8051.c 
event.c      qins.c 
idle.c      sched.c 
init.c      timer.c 
inittask.c 

 
To add these files to your project, choose Project → Targets, 
Groups, Files → Groups / Add Files, select Salvo Sources 
under Available Groups, click on Add Files to Group�, choose 
C source file (*.c) under Files of type, navigate to the 
\salvo\src directory, select3 the *.c files listed above, and click 
on Add: 

 
Figure 8: Adding Salvo Source Files to the Project 

Click on Close when finished.  

The salvocfg.h Header File 
You will also need a salvocfg.h file for this project. 
Configuration files for source code builds are quite different from 
those for library builds (see Listing 1, above). For a source code 
build, the salvocfg.h for this project contains only: 
 

#define OSBYTES_OF_DELAYS           1 
#define OSENABLE_IDLING_HOOK        TRUE 
#define OSENABLE_BINARY_SEMAPHORES  TRUE 
#define OSEVENTS                    1 
#define OSTASKS                     3 
#define OSLOC_ALL                   data 

Listing 2: salvocfg.h for a Source Code Build 

Create this file and save it in your project directory, e.g. 
c:\temp\salvocfg.h. We also recommend adding it to the 
project's Salvo Configuration File group using Project → 
Targets, Groups, Files → Groups / Add Files, etc. 



 Application Note 
 

8 AN-13  Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE 
 

 

 
Note To add a header file (*.h) to a Group, in the Get Filetype 
window you must specify that the file is of type Text Document 
file for it to be accepted.  
 
Your project window should now look like this: 

 
Figure 9: Project Window for a Source Code Build 

Building the Project 
For a successful compile, your project must also include a header 
file (e.g. #include <reg51.h>) for the particular chip you are 
using. Normally, this is included in each of your source files (e.g. 
main.c), or in a header file that's included in each of your source 
files (e.g. main.h). 
 
With everything in place, you can now build the project using 
Project → Build Target or Project → Rebuild all target files.  
The build results can be seen in the Build window: 
 

Building targer 'Target 1' 
compiling timer.c… 
compiling delay.c… 
compiling event.c… 
compiling idle.c… 
compiling init.c… 
compiling inittask.c… 
compiling mem.c… 
compiling port8051.c… 
compiling qins.c… 
compiling sched.c… 
compiling binsem.c… 
linking… 
Program Size: data=46.0 xdata=0 code=1028 
"myex1" – 0 Error(s), 0 Warning(s). 

Listing 3: Source Code Build Results 



 Application Note 
 

AN-13  Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE 
 

9 
 

This example uses a total of 46 bytes of RAM in the data space, 
and 1028 bytes of ROM in the code space. 
 
Note The µVision2 projects supplied in the Salvo for 8051 family 
distributions contain additional help files in each project's Salvo 
Help Files group. 

Testing the Application 
You can test and debug this application using the µVision2 
simulator or real hardware. You launch the debugger after a 
successful build by choosing Debug → Start/Stop Debug 
Session.  
 
You can use all of the IDE's supported features when debugging 
and testing Salvo applications. This includes breakpoints, profiling, 
watch windows, tracing, etc. 

 
Figure 10: Testing a Salvo Application in µVision2 

Debugger 

Note µVision2 supports debugging at the source code level. Only 
applications built from the Salvo source code enable you to step 
through Salvo services (e.g. OSCreateBinSem()) at the source 
code level. Regardless of how you build your Salvo application, 
you can always step through your own C and assembly code in the 
IDE / debugger. 



 Application Note 
 

10 AN-13  Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE 
 

 

Troubleshooting 

Cx51 Error: can't open file 'salvo.h' 
If you fail to add \salvo\inc to the project's include paths (see 
Figure 3) the compiler will generate errors like these: 

 
Figure 11: Compiler Error due to Missing \salvo\inc 

Include Path 

By adding \salvo\inc to the project's include path, you enable 
the compiler to find the main Salvo header file salvo.h, as well as 
other included Salvo header files. 
 
If you fail to create a salvocfg.h header file in the project's own 
directory, the compiler will generate errors like these: 

 
Figure 12: Compiler Error due to Missing salvocfg.h 

By adding the project's own directory to the project's include path, 
you enable the compiler to find the project-specific header file 
salvocfg.h. 

Cannot See Window Upon Opening Project 
If you can't see a particular window after opening an µVision2 
project that's part of a Salvo distribution, it may be because your 
display's resolution is less than that used to create the project. 
Select Window → Tile Horizontal to make all open windows 
visible. 



 Application Note 
 

AN-13  Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE 
 

11 
 

Example Projects 
Example projects for the Cx51 compiler and µVision2 IDE are 
found in the \salvo\tut\tu1-6\sysi directories. The include 
path for each of these projects includes \salvo\tut\tu1\sysi, 
and each project defines the SYSI symbol. 
 
Complete projects using Salvo freeware libraries are contained in 
the project files \salvo\tut\tu1-6\sysi\tu1-6lite.Uv2. These 
projects also define the MAKE_WITH_FREE_LIB symbol. 
 
Complete projects using Salvo standard libraries are contained in 
the project files \salvo\tut\tu1-6\sysi\tu1-6le.Uv2. These 
projects also define the MAKE_WITH_STD_LIB symbol. 
 
Complete projects using Salvo source code are contained in the 
project files \salvo\tut\tu1-6\sysi\tu1-6pro.Uv2. These 
projects also define the MAKE_WITH_SOURCE symbol. 
 
 
 
                                                 
1  This Salvo project supports a wide variety of targets and compilers. For use 

with µVision and the Cx51 compiler, it requires the SYSI defined symbol, as 
well as the symbols MAKE_WITH_FREE_LIB or MAKE_WITH_STD_LIB for 
library builds. When you write your own projects, you may not require any 
symbols. 

2  This Salvo Lite library contains all of Salvo's basic functionality. The 
corresponding Salvo LE and Pro library is slc51sdab.lib. 

3  You can Ctrl-select multiple files at once. 


	Building a Salvo Application with Keil's Cx51 C Compiler and µVision2 IDE
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	Creating Groups for Salvo Files
	Adding Salvo-specific Files to the Project
	Adding a Library
	Adding Salvo's mem.c
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Testing the Application
	Troubleshooting
	Cx51 Error: can't open file 'salvo.h'
	Cannot See Window Upon Opening Project

	Example Projects


