

AN-12
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Feb 15, 2002 updated on Jul 24, 2003
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
Microchip's MPLAB-C18 C
Compiler and MPLAB IDE v5

Note This Application Note has been superceded by AN-25
Building a Salvo Application with Microchip's MPLAB-C18 C
Compiler and MPLAB IDE v6.

Introduction
This Application Note explains how to use Microchip's
(http://www.microchip.com/) MPLAB-C18 ANSI C compiler and
MPLAB IDE v5.x together in an integrated environment to create
a multitasking Salvo application on PIC18 PICmicro devices.

We will show you how to build the example program located in
\salvo\ex\ex1\main.c for a PIC18C452 PICmicro using
MPLAB v5.50.

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with
Microchip's MPLAB-C18 C compiler:

Salvo User Manual
Salvo Compiler Reference Manual RM-MCC18

Configuring the Compiler
If you have not already done so, install the Microchip MPLAB-
C18 compiler. The install directory is normally c:\mcc18. See the
MPLAB-C18 documentation for more information. Remember to

http://www.microchip.com/

 Application Note

2 AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

add the following line to your autoexec.bat file or verify that it is
already in place:

 SET MCC_INCLUDE=c:\mcc18\h

Also, verify that c:\mcc18\bin and c:\mcc18 have been added to
your PATH environment variable.

Launch MPLAB but do not open any projects. Open the Project
→ Install Language Tool � window and select Language
Suite: Microchip and Tool Name: MPLAB-C18. Browse to or
type in the full pathname for mcc18.exe on your system:

Figure 1: Installing the MPLAB-C18 Language Tool

Ensure that the Command-line radio button is selected. Repeat for
the Tool Name: MPASM (mpasm.exe) and Tool Name:
MPLINK (mplink.exe).1 Click OK to continue.

Creating and Configuring a New Project
Create a new MPLAB project under Project → New Project.
Navigate to your working directory (in this case we've chosen
c:\temp) and create an MPLAB project named myex1.pjt:

Figure 2: Creating the New Project

Click OK to continue.

In the Edit Project window, select the appropriate Development
Mode and Language Tool Suite: Microchip. To aid MPLAB-
C18 in finding the project's main.c source and salvocfg.h

 Application Note

AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

3

include files, set the Include Path to the directory in which your
project is located:

Figure 3: Setting the Include Path, Development Mode

and Language Tool Suite

Note Do not add any additional pathnames to the Include Path
shown in Figure 3 – this can cause problems when nested header
files are present. Where necessary, add them on a node-by-node
basis. See Adding your Source File(s) and Troubleshooting:
Seemingly Random Build Errors, below.

Click on myex1[.hex] and click on Node Properties. Select
Language Tool: MPLINK. Select the following options in the
Node Properties window by clicking the corresponding box:

• Map File: On (the filename myex1.map will
automatically be specified under Data)

 Application Note

4 AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

Figure 4: Setting Linker Options

Click OK to continue.

Now that MPLINK has been specified as the linker, you can
specify the required Library Path (c:\mcc\lib) and Linker
Script Path (c:\mcc\lkr) in the Edit Project window:

Figure 5: Setting Library Path and Linker Script Path

Options

Click OK to continue.

 Application Note

AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

5

Adding your Source File(s) to the Project
Click on myex1[.hex] in the Project Files pane of the Edit
Project window and click on Add Node. Choose main.c in the
\salvo\ex\ex1 directory and click OK:

Figure 6: Selecting main.c Source File

Click on main[.c] in the Project Files pane of the Edit Project
window and click on Node Properties. Under Language Tool:
select MPLAB-C18, and select the following options:

• Memory Model: Small2
• Enable All Optimizations: On
• Include Path: \salvo\inc

Since this project is intended to run on Salvo's syse test system,
we'll also define the symbol SYSE via Define: On SYSE.3 Where
necessary, additional include paths and defined symbols can be
added to the Additional Command Line Options field with
-ipathname and -dsymbolname.

Figure 7: Setting Compiler Options

 Application Note

6 AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

The \salvo\inc Include Path enables MPLAB-C18 to find the
Salvo header files. Click OK to continue.

Note This project has just one source file, main.c. The easiest
way to add additional source files is to select an existing source file
(e.g. main.c) in the Project Files pane of the Edit Project
window and then use the Copy Node button to add the source
file(s). This method copies the node properties of the existing
source file (i.e. main.c) and saves you from having to re-enter
them via the Node Properties button. All source files should be
added before you add any libraries to your project (see below).

Adding a Linker Script to the Project
MPLAB-C18 requires a processor-specific linker script. To add it,
click on Add Node in the Project Files pane of the Edit Project
window, navigate to the linker script folder (usually c:\mcc\lkr)
and select the appropriate script:

Figure 8: Selecting the Appropriate Linker Script

Click OK to continue. The Edit Project window will now look
like this:

 Application Note

AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

7

Figure 9: Project Window prior to Adding Salvo Files

Adding Salvo-specific Files to the Project
Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries,
or with the Salvo source code files as nodes in your project.

Adding Salvo's mem.c
Salvo library builds require Salvo's mem.c source file as part of
each project. Click on myex1[.hex] in the Project Files pane of
the Edit Project window and click on Add Node. Choose mem.c
in the \salvo\src directory and click OK:

Figure 10: Adding Salvo's mem.c Source File

Adding a Library
For a library build, a freeware library that's appropriate for the
PIC18C452 is sfc18sfa.lib.4 In the Project Files pane of the

 Application Note

8 AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

Edit Project window, click on Add Node, in the Add Node
window select List files of type: Libraries (*.lib), navigate to
\salvo\lib\mcc18, click on sfc18sfa.lib and click OK:

Figure 11: Adding the Library to the Project

You can find more information on Salvo libraries in the Salvo
User Manual and in the Salvo Compiler Reference Manual RM-
MCC18.

You will also need a salvocfg.h file for this project. To use the
library selected in Figure 11, your salvocfg.h should contain
only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_GLOBALS OSF
#define OSLIBRARY_CONFIG OSA
#define OSLIBRARY_VARIANT OSNONE

Listing 1: salvocfg.h for a Library Build

and should be located in your project directory (in this case,
c:\temp). Your Edit Project window should now look like this:

Figure 12: Edit Project Window for a Library Build

 Application Note

AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

9

Note When using a Salvo library, it must appear at the end of
your project's list of nodes.

Proceed to Building the Project, below.

Adding Salvo Source Files

If you have a Salvo distribution that contains source files, you can
do a source code build instead of a library build. The application in
\salvo\ex\ex1\main.c contains calls to the following Salvo user
services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c mem.c
delay.c portpic18.c
event.c qins.c
init.c sched.c
inittask.c timer.c

To add these files to your project, in the Edit Project window
select main.c, click on Copy Node, and navigate in the Copy
Node window to the \salvo\src directory. Add each one of the
files listed above,5 and click OK.

Figure 13: Adding Salvo Source Files to the Project

Your Edit Project window should now look like this:

 Application Note

10 AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

Figure 14: Complete Project Window

Click OK, then select Project → Save Project to save the project.

You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, your salvocfg.h should contain only:

#define OSBYTES_OF_DELAYS 1
#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSTASKS 3
#define OSLOC_ALL

Listing 2: salvocfg.h for a Source Code Build

and should be located in your project directory (in this case,
c:\temp).

Building the Project
With everything in place, you can now build the project. Here are
the results6 when building \salvo\ex\ex1\syse\ex1lite.pjt,
which links to a freeware library:

 Application Note

AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

11

Building EX1LITE.HEX...

Compiling MAIN.C:
Command line: "C:\mcc\bin\mcc18.exe -w2 -ms -o
-i\salvo\inc -dSYSE -p=18C452 -i\SALVO\EX\EX1\SYSE
-dMAKE_WITH_FREE_LIB D:\SALVO\EX\EX1\MAIN.C"
MPLAB C18 v1.10 Copyright 2001 Microchip Technology Inc.
Errors: 0
Warnings: 0

Linking:
Command line: "C:\PROGRA~1\MPLAB\MPLINK.EXE /m
ex1lite.map /o EX1LITE.HEX /l C:\MCC\LIB /k C:\MCC\LKR
D:\SALVO\EX\EX1\MAIN.O C:\MCC\LKR\18C452.LKR
D:\SALVO\LIB\SFC18SFA.LIB "
MPLINK 2.50, Linker
Copyright (c) 2001 Microchip Technology Inc.
Errors : 0

MP2COD 2.50, COFF to COD File Converter
Copyright (c) 2001 Microchip Technology Inc.
Errors : 0

MP2HEX 2.50, COFF to HEX File Converter
Copyright (c) 2001 Microchip Technology Inc.
Errors : 0

Build completed successfully.

Listing 3: Build Results with Freeware Library

The results for a project that uses a standard library in place of a
freeware library differ only in that the standard library
slc18sfa.lib is used.

You can examine the project's map file under Window → Map
File for further information on ROM and RAM utilization, etc.

Testing the Application
You can test and debug this application with full source code
integration in the MPLAB Simulator. After a successful build,
select File → Open, navigate to \salvo\ex\ex1\main.c in the
Open Existing File window, click OK, set a breakpoint on the
PORTB ^= 0x08; line of Task3(), and select Debug → Run →
Run F9. Program execution will stop at the breakpoint in
Task3(). Now zero the stopwatch in the Stopwatch window,
select Debug → Run → Run F9, and wait until execution stops.
The Stopwatch window now displays an elapsed time of 400ms
(40 times 10ms, the TMR0-driven system tick rate in this application
for a 4MHz clock).

 Application Note

12 AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

Figure 15: Measuring 400ms of Task Delay in the

Simulator via a Breakpoint

Note The extra 0.37 milliseconds shown in the Stopwatch
window of Figure 15 are due to unavoidable jitter in the system
timer – well under the system tick interval of 10ms (10,000
instruction cycles in this example). See the Salvo User Manual for
more information on the system timer.

If you are doing a full source-code build, you can also trace
program execution through the Salvo source code. Select Debug
→ Run → Reset F6, Debug → Clear All Points → Yes, and
set a breakpoint at the first call to OSCreateTask() in main.c.
Select Debug → Run → Run F9. Execution will stop in main.c
at the call to OSCreateTask(). Now7 choose Debug → Run →
Step F7. The \salvo\src\inittask.c file window will open,
and you can step through and observe the operation of
OSCreateTask().

 Application Note

AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

13

Figure 16: Stepping Through Salvo Source Code

Troubleshooting

"No Build Tool Installed …"
If you receive this error:

Building MYEX1.HEX...
Compiling MAIN.C:
No build tool installed for this file.

Build failed.

Listing 4: Failure to Build Project

when trying to build your project, it may be due to an improper
Language Tool selection in the Node Properties of the file
being compiled. Ensure that you have selected Language Tool:
MPLAB-C18 for each *.c file in your project.

MP2COD Warnings with Library Builds
When building your project using Salvo libraries, you may
encounter a warning like this:

 Application Note

14 AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

MP2COD v2.20.00, COFF to COD File Converter

Copyright (c) 2000 Microchip Technology Inc.

Warning - Could not open source file
'c:\build\salvo\src\binsem.c'.

This file will not be present in the list file.

…

Warning - Could not open source file
'c:\build\salvo\src\timer.c'.

This file will not be present in the list file.

Errors : 0

Warnings : 10

Listing 5: "This file will not be present …" Warnings

These warnings can be avoided by ensuring that you are running
the latest version of MP2COD.EXE.

No Debug Information Available
If the pop-up window shown in Figure 17 appears after you select
Debug → Run → Run, then Debug → Run → Halt an
application from within MPLAB, it's probably because you've
selected No List File: On in the Node Properties of the target
([.hex]) file. Be sure to leave this option unchecked.

Figure 17: Result of Suppressing List File

Seemingly Random Build Errors
If you encounter either

"Unable to spawn process. WinExec returned error code
0."

or

 Application Note

AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

15

" MPLAB is unable to find output file "filename". This
may be due to a compile, assemble, or link process
failure."

errors this is probably due to the manner in which you've specified
your project's include paths. To confirm this, select Window →
Project and examine the dependency lists for all of the nodes in
your project. A typical node in a Salvo project will have a few (e.g.
1-5) header file dependencies. If you encounter one or more nodes
with many more unneeded dependencies, then these build errors
are likely to occur.

The solution is to specify only your working directory in your
project's Include Path (as shown in Figure 3), and manually add
any other required include paths by using MPLAB-C18's
-ipathname command-line parameter.

Example Projects
Example projects for MPLAB-C18 can be found in the
\salvo\tut\tu1-6\syse directories The MPLAB Include Path
for each of these projects is set to \salvo\tut\tu1\syse, and
each project defines the SYSE symbol.

Complete projects using Salvo freeware libraries are contained in
the MPLAB project file \salvo\tut\tu1-6\syse\tu1-

6lite.pjt. These projects also define the MAKE_WITH_FREE_LIB
symbol.

Complete projects using Salvo standard libraries are contained in
the MPLAB project file \salvo\tut\tu1-6\syse\tu1-6le.pjt.
These projects also define the MAKE_WITH_STD_LIB symbol.

Complete projects using Salvo source code are contained in the
MPLAB project file \salvo\ tut\tu1-6\syse\tu1-6pro.pjt.
These projects also define the MAKE_WITH_SOURCE symbol.

1 They are normally located in the MPLAB installation directory.
2 Salvo supports small and large memory models for use with MPLAB-C18. All

nodes must have the same memory model selected, and the memory model
must match that of the Salvo library used (if any).

3 See \salvo\ex\ex1\main.c for examples of where SYSE and other test-
system-specific symbols are used.

4 This library was compiled using the small memory model, and matches the
node properties for main.c. The corresponding standard library is
slc18sfa.lib.

5 You can Ctrl-select multiple files at once.

 Application Note

16 AN-12 Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5

6 The build results are shown in this format to avoid the window clipping that

occurs in the normal MPLAB Build Results window.
7 Ensure that a C source window (in this case, main.c) is the foremost window

when stepping through C source code. If the Program Memory window is
foremost, stepping will occur in assembly language instead.

	Building a Salvo Application with Microchip's MPLAB-C18 C Compiler and MPLAB IDE v5
	Introduction
	Related Documents
	Configuring the Compiler
	Creating and Configuring a New Project
	Adding your Source File(s) to the Project
	Adding a Linker Script to the Project
	Adding Salvo-specific Files to the Project
	Adding Salvo's mem.c
	Adding a Library
	Adding Salvo Source Files

	Building the Project
	Testing the Application
	Troubleshooting
	"No Build Tool Installed …"
	MP2COD Warnings with Library Builds
	No Debug Information Available
	Seemingly Random Build Errors

	Example Projects

